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a b s t r a c t

We propose a theoretically feasible scheme for controllably inducing and effectively detecting geometric
phases by a superconducting circuit device. Only by adjusting the microwave pulses applied to the con-
sidered circuit, the non-Abelian and Abelian geometric phases can be induced controllably. Through con-
sidering the population difference after two composite evolutions, the noncommutative or commutative
features of geometric phases can be explicitly shown. We address the scenarios of physical implementa-
tions with the available technology. Thus the scheme may offer a potential approach for synthetically
investigating geometric phases with Josephson circuits.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In terms of the initial work of Berry, the Abelian geometric
phase can be acquired when a system Hamiltonian undergoes an
adiabatic evolution [1]. Generalizing Berry phase to the case of
degenerated states, Wilczek and Zee showed that the non-Abelian
geometric phase emerges when the adiabatic evolution involves a
twofold degenerate eigenspace [2]. Geometric phases play an
important role in understanding novel phenomena associated with
atomic physics and condensed matter physics [3]. During the past
few years, geometric phases have attracted considerable atten-
tions, mainly due to their potential applications in quantum com-
puting [4–8], Cooper-pair pump [9,10], quantum phase transition
[11], etc. To utilize geometric phases well, inducing geometric
phases and detecting their features are crucial issues, and thus
some attractive schemes have been put forward theoretically and
experimentally [12–17]. Very recently, the non-Abelian adiabatic
phases in a trapped ion were demonstrated effectively [18].

As artificial atom systems, superconducting nanocircuits have
offered an excellent testing ground for the fundamental laws of
quantum mechanics [19–23]. This is primarily because supercon-
ducting Josephson devices have some distinctive advantages. It is
convenient to control the systems by adjusting the electromag-
netic parameters such as gate voltages and bias fluxes [24,25].
The energy-level spacings are in the range of microwaves, and
the controllable interactions between the artificial atoms and
microwave fields can be realized optically [20]. The quantum-state

measurements can be implemented accurately with current tech-
niques as well [24]. Many valuable proposals to study geometric
phases have been reported with Josephson nanocircuits.

The effective methods to detect Berry phases in superconduc-
ting circuits were presented in [26,27], where the geometric
phases can be related to the probability amplitudes of quantum
states. By adiabatically adjusting the biased microwave fields, the
Berry phases were observed in a Josephson qubit experimentally
[28]. With a device of superconducting charge pump, the Berry
phase accumulated during each adiabatic pumping cycle can be
determined quantitatively [29]. Moreover, utilizing a driven
three-level transmon-type system, Berger et al. considered the ef-
fect of the second excited state on the Berry phase [30]. With the
degenerated eigenstates of Josphson circuits, the non-Abelian geo-
metric phases have been analyzed by adiabatic charge dynamics
[31]. These previous works mainly focused on the Abelian or
non-Abelian phases in adiabatic cases. However, how to induce
controllably non-Abelian and Abelian types of geometric phases
and to effectively detect their features are desirable to coherently
control over quantum systems.

Motivated by the above purpose, we theoretically present a fea-
sible scheme for inducing and detecting the geometric phases with
the same superconducting circuit device. Since the four lowest lev-
els of the considered circuit are well separated from the higher
ones, they can be chosen as a four-level system. By adiabatically
applying microwave pulses to the system, the non-Abelian and
Abelian geometric phases can be controllably obtained in the
dark-state space. We consider the population difference regarding
the same quantum state after two composite evolutions, demon-
strating explicitly the noncommutative or commutative features
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of the geometric phases. Based on the accessibly experimental tech-
nology, we further deal with the physical realizations of the pro-
posed protocol. The scheme may provide us the significant step
toward studying the geometric phases with Josephson nanocircuits.

The paper is organized as follows. In Section 2, we present a
superconducting quantum circuit as an effective four-level system.
The geometric phases are induced controllably in Section 3. Detect-
ing the noncommutative or commutative features of geometric
phases are given in Section 4. We address the physical realizations
of detecting geometric phases in Section 5. Finally, discussion and
conclusions are drawn in Section 6.

2. An effective four-level system

As schematically shown in Fig. 1, consider a superconducting
Josephson device nicknamed quantronium circuit [32]. The basic
Cooper-pair box consists of a low-capacitance island, connected
to a superconducting reservoir through two Josephson junctions
with identical capacitance CJ and Josephson energy EJ. The island
has excess Cooper-pairs n. Through the gate capacitance Cg, the is-
land can be biased by voltage sources containing static Vd and ac eV j

components. Another Josephson junction with coupling energy
EJ0� EJ is inserted in the circuit loop. By applying a current pulse
Ib(t) to EJ0 and monitoring the voltage U(t), the desired quantum
states can be read out effectively [32].

A static voltage Vd applied to the gate capacitance Cg induces
offset charge number nd = CgVd/2e. The Hamiltonian describing
the static system reads H0 ¼ Ecðn� ndÞ2 � EJ cos h, in which h and
n fulfils the conjugate relation, [h,n] = i. The characteristic charging
energy is Ec = 2e2/CR, with CR = (Cg + 2CJ) being the total capaci-
tance of the box. And the effective Josephson energy is
EJ ¼ 2EJ cos d

2

� �
; d indicates the phase difference across the combi-

nation of the two junctions. In our considered regime, EJ has the
same order of magnitude as Ec. Within the Cooper-pair basis
{jni, jn + 1i}, the Hamiltonian is rewritten as [33,34]

H0 ¼
X

n

½Ecðn� ndÞ2 nj i nh j � EJ

2
ð nj i nþ 1h j þ H:c:Þ�: ð1Þ

According to Eq. (1), the first four eigenlevels Ek as functions of
gate charge nd for a selected EJ ¼ 2:5Ec are given in Fig. 2, with
k = 1, 2, 3 and 4. Under the radiations from the external fields,
the system can serve as an effective four-level system. The four lev-
els are denoted by jski. And each level state is the superposition of
many Cooper-pair states [35], j ski ¼

P
nCkn j ni, where Ckn = hnjski

are the superposition coefficients and satisfy
P

n j Cknj2 ¼ 1.
The system working at the magic point (nd = 0.5) is resilient

against the dephasing effects [32]. At the bias point nd = 0.5, we
have the eigenfunctions js2i and js4i of the Hamiltonian H0, see
Fig. 3(a). The transition js2iM js4i induced by the external field is
required in our scheme. However, the selection rule determined
by the parity symmetry of eigenfunctions [36] impedes the desired
transition between js2i and js4i, as will be mentioned below. So, nd

must be slightly away from 0.5 to break the parity symmetry. Here
the working point is chosen as nd = 0.45 [37]. We obtain the eigen-
functions jsji and js4i plotted in Fig. 3(b,c and d), with j = 1, 2 and 3.
As a consequence, allowed by the selection rules, the level transi-

tions jsjiM js4i can be implemented via microwave pulses eV j.
Meanwhile, the system that is biased near the magic point keeps
the robust coherence as much as possible.

3. Controllable inducements of geometric phases

To obtain the level transitions between jsji and js4i, we apply ac
pulse voltages eV j ¼ VjðtÞ cos ðxjtÞ to the gate capacitance, where
Vj(t) are small time-dependent magnitudes obeying CgVj(t)/
2e� 1/2, and xj are ac frequencies. Since the microwave pulses
are diagonally coupled to the charge states, the interaction Hamil-
tonians are given by [37] eHj ¼ �2Ec ~njðtÞ

P
nðn� ndÞ j nihn j, where

~njðtÞ ¼ njðtÞ cosðxjtÞ, with nj(t) = CgVj(t)/2e being the reduced
amplitude. The fast oscillating terms such as ~n2

j ðtÞ have been elim-
inated under the rotating wave approximation. The transitions can
be described by matrix elements tj4 ¼ hsj j eHj j s4i that are induced
by microwave pulses ~njðtÞ. Here the applied ac frequencies xj are
resonantly matched with the transition frequencies x4j = (E4� Ej)/⁄.
Therefore, the other microwave-induced transitions such as
js1iM js3i and js2iM js3i can all be neglected safely [38].

As stated above, we have obtained the nd-dependent probability
amplitudes cjn and c4n with respect to jni, see Fig. 3(a–d). Now we
analyze the transition matrix elements tj4 ¼ hsj j eHj j s4i to explain
the prohibitions or allowances of the transitions jsjiM js4i. The
matrix elements can be expressed as tj4 ¼ �2Ec~njðtÞOðnÞj4 , where
OðnÞj4 ¼

P
nðn� ndÞc�jnc4n stand for nd-dependent wavefunction over-

laps between jsji and js4i. It is numerically found that OðnÞ24 ¼ 0 for
nd = 0.5, namely, the transition between js2i and js4i is thus prohib-
ited. Physically, there exists an even symmetry between js2i and js4i,
as illustrated in Fig. 3(a). Differently, by eliminating the even sym-
metry, we have OðnÞ24 ¼ �0:1187 for nd = 0.45, which means that the
parity symmetry-determined selection rule allows the transition
between js2i and js4i. Similarly, using the relevant parameters, we
have OðnÞ14 ¼ �0:0942 and OðnÞ34 ¼ 1:177 for nd = 0.45. Therefore, the
transitions between jsji and js4i are all allowed at the chosen work-
ing point.

As sketched in Fig. 4(a), we have the level transitions jsjiM js4i
via ~njðtÞ, j = 1, 2 and 3. In the rotating wave approximation, the
interaction Hamiltonian within the rotating frame is described by
[12,38]

HðaÞI ¼ �hðX1 s1j i s4h j þX2 s2j i s4h j þX3 s3j i s4h jÞ þ H:c:; ð2Þ

with Rabi frequencies Xj ¼ njðtÞEc j OðnÞj4 j =�h. Note that Xj can be
switched on and off effectively by adjusting ~njðtÞ. The couplings
between jsji and js4i will exist when ~njðtÞ are turn on. Otherwise,

Fig. 1. Schematic diagram of the considered circuit device, this figure is reproduced
from Fig. 1 of Ref. [32].
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Fig. 2. The first four levels Ek as functions of gate charges nd, and energies are given
in units of Ec. The considered level states are denoted by jski, k = 1, 2, 3 and 4.
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