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a b s t r a c t

By solving the time dependent Ginzburg–Landau equations, we investigated the influence of an internal
triangular arrangement of point-like defects on the vortex configurations in a thin mesoscopic sample.
The effect of the number of internal defects and their nature on the entrance position of the vortex is
studied for a very thin circular sample. We found that the interplay between the vortex–vortex repulsion,
the vortex–defect interaction and the interaction with the sample border leads to non-commensurate
vortex configurations.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

A mesoscopic sample size is closed to the coherence length k(T)
and/or penetration length n(T), thereby involving some significant
modifications to the physical properties of the superconducting
state due to confinement effects. Therefore, for such mesoscopic
samples, nucleation of the superconducting state depends strongly
on the topology of the system [1]. Many different topologies have
been studied experimentally and theoretically, i.e., simple single
loops [2–4], disks [5–9], circular wedges [10–16], surface rough-
ness and surface defects [17–20]. All these superconducting struc-
tures have attracted attention as potential new components for
low-temperature electronics. In the present paper, by solving the
non-linear time dependent Ginzburg–Landau (TDGL) equations,
we calculate the magnetization, Gibbs free energy, vorticity and
the superconductor electron density for a thin disk for two values
of the number of point-like defects (small dots or anti-dots),
namely, nd = 3,6 forming a triangular arrangement inside the sam-
ple. The paper is outlined as follows. In Section 2 we present the
theoretical formalism which was used in order to find the vortex
configuration, vorticity, free energy and magnetization. Next, in
Section 3 we present the results and discussions. Finally, in Sec-
tion 4 we present the conclusions.

2. Theoretical formalism

We consider a thin superconducting disk immersed in an insu-
lating medium in the presence of a perpendicular uniform

magnetic field H0. Using dimensionless variables, we write the sys-
tem of the time dependent Ginzburg–Landau equations for the or-
der parameter w and the vector potential A in the following form:

@w
@t
¼ �ðirþ AÞ2wþ wðjwj2 � 1Þ ð1Þ

@A
@t
¼ Re½�wð�ir� AÞw� � j2r�r� A ð2Þ

where T is the temperature in units of the critical temperature;
lengths are in units of n(T), and fields in units of Hc2(T), the upper
critical field; j is the Ginzburg–Landau parameter which is material
dependent; Re indicates the real part of a complex variable and the
overbar means the complex conjugation; (for more details, see Refs.
[21,22]). Here, we will neglect the z-dependence on the order
parameter. This is reasonable for thickness of the disk d much smal-
ler than the coherence length. Notice that Eqs. (1) and (2) are gauge
invariant. Let n be an unit vector normal to the interface and direc-
ted outward the superconducting domain. We will assume that the
normal current density vanishes at the interface, that is,
ð�i$� AÞw � n ¼ 0, simulating a superconductor/vacuum interface.
In order to solve Eqs. (1) and (2) we used the link variables approach
as it was adapted for circular geometries as described in Ref. [5]. The
grid used for the discretization of the TDGL equations on a circular
sector and the other physical quantities, such as magnetization, free
energy, vortex number, can be found in more detail in Ref. [5]. Let a
thin superconducting disk domain be given by {(x,y,z) 2 R3:
(x,y) 2 R2,jzj < d g(x,y)}, for all (x,y). Here, g(x,y) is some function
which describes the topology of the top surface of the disk. Accord-
ing to Refs. [23–25] the TDGL equations can be reduced to:
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@w
@t
¼ �1

g
ði$þ A0Þ � gði$þ A0Þwþ wð1� jwj2Þ ð3Þ

where the magnetic field is nearly uniform inside the superconduc-
tor, that is, H0ẑ ¼ $� A0. For the case of a thin disk, we take the
function g = 1 everywhere, except in some points inside the disk
where we use g – 1, simulating the presence of a small anti-dot
(g = 0.5) and dot (g = 1.2) inside the sample (see Fig. 1).

3. Results and discussion

We solve the time dependent Ginzburg–Landau equations in or-
der to obtain the vortex configuration in a mesoscopic supercon-
ducting disk of radius R = 6.5n(T), thickness d� n,k with nd

defects distributed forming a triangular array. We consider the
three following scenarios:

Case 1: nd = 3 such that one defect is dot and two defects are
anti-dots;

Fig. 1. Schematic side view of the sample: a superconducting disk of radius R and
thickness d, with nd point defects. g = 1.0 everywhere, except for (a) g = 0.5
simulating an anti-dot, (b) g = 1.2 simulating a dot.

Fig. 2. Energy as a function of the applied field for a disk with radius R = 6.5n(T):
(Up) for nd = 3 for all cases specified in the text, however, for case 3 we considered
the defects as dots; (Down) for nd = 3,6 as anti-dots (Case 3).

Fig. 3. Magnetization curves as a function of external magnetic field for the same
situations as in Fig. 2.

Fig. 4. Vorticity curves as a function of external magnetic field for the same
situations as in Fig. 2.
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