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a b s t r a c t

We have studied the dynamics of vortices interacting with periodic planar pinning arrays using molecular
dynamics simulation. We consider three types of periodic pinning arrays consisting of long (L) and short
(S) pinning intervals. Current–voltage curves and critical currents have been calculated as a function of
vortex density for each pinning array model. Compared to the model with equally spaced pinning array,
the models in which L/S is 2 show higher critical currents in certain vortex density range. This behavior
comes from the appearance of broad matching peaks in the presence of planar pinning arrays. Mean-
while, in the models in which L/S is 1.618, the appearances of some of the matching peaks are suppressed
because of the mismatch between the pinning interval and the vortex lattice constant. Thus, compared to
the equally spaced model, the critical currents in this model are low in wide ranges of vortex density. On
the basis of these results, we have discussed the matching effect in the presence of periodic arrays of pla-
nar pinning.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The enhancement of the vortex pinning by introducing artificial
pinning center is of great interest in the practical application of
superconductor because it often causes the increase of the critical
current (jc). Therefore, over the past few decades, considerable ef-
forts have been made to create artificial pinning sites that can
immobilize vortices effectively. Since the pinning efficiency of peri-
odic pinning arrays is higher than that of randomly distributed pin-
ning, the fabrication of periodic pinning arrays has been one of
attractive subjects. The pinning efficiency in periodic pinning ar-
rays is substantially enhanced when the configuration of vortices
is commensurate with that of pinning arrays. This phenomenon
is called ‘‘matching effect’’, and this effect appears as peaks in
the jc vs vortex density (jc–B) curve [1–3]. Recent progress of nano-
fabrication technique has provided well-controlled shape and
arrangement of pinning sites, and a wide variety of periodic pin-
ning arrangements has been studied extensively [4–13]. Further-
more, ‘‘quasi’’ periodic pinning array has also been investigated,
and an unusual broad matching peak in jc–B curve has been re-
ported [14–18]. The ‘‘broadness’’ of these matching peaks is a
strong advantage in practical applications requiring high jc in a
wide range of magnetic fields.

Recently, using deposition technique, superconducting/non-
superconducting multilayer films whose non superconducting
layer align at regular intervals have been fabricated (e.g. MgB2/Ni

layer [22,23], YBCO/Pr123 layer [24,25]) and the matching effect
in the presence of periodic planar pinning arrays has attracted
much attention. The vortex dynamics interacting with planar pin-
ning arrays is analogous to the two-dimensional (2D) vortex
dynamics in the presence of one-dimensional (1D) pinning arrays.
The physics of 2D vortices in the presence of 1D periodic pinning
potential has been studied both experimentally and theoretically
[26–31]. In contrast to sharp matching peaks in the case of point
pinning arrays, ‘‘broad’’ matching peaks appear in the case of 1D
pinning arrays. The broad matching peaks have been also reported
in MgB2/Ni layer structure around the first matching field [23]
where the pinning interval is equal to the height of the Abrikosov
lattice. Previous theoretical studies have suggested that the broad-
ness of these matching peaks comes from the flexible deformation
of vortex lattice fitting in underlying pinning arrays [29,32].

In our previous paper, we investigated the vortex dynamics in
the presence of the planar pinning array aligned at regular inter-
vals using molecular dynamics simulation. We reported broad
matching peaks in jc–B curves and clarified various matching con-
figurations in a wide range of vortex density [32]. However, we fo-
cused only on the planar pinning array aligned at regular intervals.
As in the case of periodic arrays of point pinning, there are a num-
ber of possible periodic geometries of the planar pinning, and the
difference in the geometry would affect the vortex dynamics and
matching effect considerably. However, so far no studies have tried
to investigate the vortex dynamics interacting with planar pinning
arrays that are periodic but are aligned at ‘‘non regular intervals’’.

In this paper, to clarify the effect of planar pinning geometries
on matching effect, we have investigated the vortex dynamics in
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the presence of three types of periodic pinning arrays consisting of
long (L) and short (S) pinning intervals (e.g. SLSLSLc). Current–volt-
age curves and jcs have been calculated as a function of vortex den-
sity for each pinning array model. Compared to the model with
equally spaced pinning array, the models in which L/S is 2 show
higher critical currents in certain vortex density ranges. Mean-
while, in the models in which L/S is 1.618, the appearances of some
of the matching peaks are suppressed, which result in lower jcs in
wide ranges of vortex density compared to the equally spaced
model.

2. Model and method

In this work, we consider a two dimensional slice in the x–y
plane of an infinite three dimensional sample. We use periodic
boundary conditions in the x–y plane and treat the vortices as stiff
rods that are perpendicular to z direction. For simplicity, we as-
sume planar pinning centers are dominant pinning centers, and
ignore all the other kinds of pinning centers. We assume pinning
planes are perpendicular to the x axis. The applied current is ori-
ented in the direction of the y axis so that the Lorentz force acts
perpendicular to planar pinning centers. Vortex motion is deter-
mined by solving the following overdamped equation [19–21,32]

g
d
dt

ri ¼ Fvv þ Fpl þ F th þ FL: ð1Þ

Here, g is the viscous coefficient which is set to unity, ri is the loca-
tion of ith vortex, Fvv is the repulsive force from other vortices, Fpl is
the pinning force, Fth is the thermal noise, and FL is the Lorentz
force.

The form of Fvv can be derived from the London theory as [33],

Fvv ¼
XNv

j–i

U2
0

8p2k3 K1
jri � rjj

k

� �
ri � rj

jri � rjj
; ð2Þ

where k is the penetration depth, U is the flux quantum, Nv is the
number of vortices, and K1 is the modified Bessel function. The pla-
nar pinning center is modeled as an attractive channel with a width
of 2Rpl, and Fpl is given by

Fpl ¼ �fpl

XNpl

k¼1

xik 1� x2
ik

� �
Hð1� jxikjÞx̂: ð3Þ

Here, fpl is the pinning strength parameter of planar pinning, Npl is
the number of the planar pinning sites, xik ¼ ðx̂ � ri � PkÞ=Rpl with Pk

the x-coordinate of kth planar pinning, and H is the Heaviside step
function. The elementary pinning force of planar pinning fmax is
estimated as 0.38 fpl from Eq. (3). The thermal fluctuation is as-
sumed to be a Gaussian white noise. The Lorentz force FL is assumed
to act on all vortices uniformly. Throughout this work, we take the
magnetic penetration length k as a constant parameter, and all
lengths are measured in unit of k, forces in unit of f0 ¼ U2

0=8p2k3,
energies in unit of U0 ¼ U2

0=8p2k2, vortex density in unit of
B0 = U0/k2, and time in unit of t0 = gk/f0.

We obtain the initial vortex position using simulated annealing
method. After getting a static configuration, we start to apply Lor-
entz force and calculate the average vortex velocity in the x direc-
tion v̂x using Eq. (1) at 0 K. Note that the third term of Eq. (1) is
zero in all calculations after getting the static configuration. Then
we increase the applied Lorentz force linearly with time, and calcu-
late v̂x for each increment. The average vortex velocity and the Lor-
entz force are related to macroscopically measured voltage and
current respectively. We define the critical depinning force fcr as
the force when v̂x reaches the value of 0.03 times of linear response
in an unpinned ideal sample ðv̂x ¼ fLÞ. This criterion was used in
previous reports and thought to be valid [3,32,34]. The fcr repre-

sents the transition point between pinned and moving states of a
vortex, and is related to the critical current density.

We consider three types of periodic pinning array composed of
two pinning intervals long L and short S. In model A, a unit cell con-
sists of one S and one L, and the ratio of L to S is 2. In model B, a unit
cell consists of two S’s and one L, and the L to S ratio is 2. Hereafter,
we denote these two configurations as (SL) and (SSL), respectively.
Model C has the same configuration as model A, i.e. (SL), but the L
to S ratio is 1.618 (1.618 is approximation value of golden ratio). In
Fig. 1a and b, we show the schematic figures of models A, B and C.
We set S and L so that the average pinning interval equals to 1.2k
(e. g. S = 0.8k, L = 1.6k in model A). The model whose planar pin-
nings align at 1.2k intervals has been studied in our previous paper
[32], and we denote this model as model D.

3. Results

3.1. fcr–B curve in model A

In Fig. 2, we show the examples of average vortex velocity v̂x

versus the Lorentz force curve at 1.39B0 and 2.08B0. The values of
fcr correspond to the positions of the jumps of v̂x from zero in these
curves. In Fig. 3a and b, we show fcr and free vortex ratio (FVR) as a
function of vortex density in model A. The dotted lines indicate the
previous results in the model D. The value of FVR represents the ra-
tio of depinned vortices to all vortices below fcr. We found that
step-like changes of fcr and FVR corresponds to drastic change of
vortex configurations. In Fig. 4a–c, we show vortex positions (black
circles) and planar pinning arrangements (shaded regions) at
0.14B0, 1.22B0 and 5.00B0. Up to �0.2B0, vortices form an ordered
lattice along to the planar pinnings as shown in Fig. 4a. In this
range, the interval between the ‘‘lines’’ of vortices along the y axis,
‘‘dv’’, is equal to S + L, and all vortices are pinned. Thus FVR equals
to zero, and fcr equals to fmax. In the range from 0.7B0 to 1.9B0, vor-
tices again form an ordered lattice whose dv equals S as shown in
Fig. 4b. In these configurations, three lines of vortices along the
y-axis appear in a unit cell, and one of them is depinned. Thus,
FVR equals to 1/3, so that fcr’s are simply estimated as (1 � 1/3)
fmax. Similarly, in the range from 4.2B0 to 6.7B0, vortices form an or-
dered lattice whose dv equals S/2 as shown in Fig. 4c. Here, FVR
equals to 2/3, so that fcr equals to 1/3 fmax. Meanwhile, in the vortex
density range other than those described above, vortices do not
form an ordered lattice fitting in the periodic array of planar pin-
nings (see Fig. 5a for B = 2.50B0), or vortices form oblique lattices
whose bases are parallel to x axis (see Fig. 5b for B = 0.28B0). In
both cases fcr becomes lower than that simply estimated from
FVR. It should be noted that the oblique lattices ‘‘geometrically’’
fit in the periodic pinning array. However, in these lattices the vor-

Fig. 1. Schematics of the planar pinning configurations composed of two pinning
intervals long (L) and short (S), (a) models A and C, (b) model B. Dark region denote
planar pinning centers while bright ones are regions without pinning centers.
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