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A B S T R A C T

The multiple scattering problem of small angle neutron scattering (SANS) is revisited using differential equations
from which different contributions are derived. The coherent scattering is connected to multiple scattering events
and the ideal single scattering cross sections can be related to the apparent scattering cross section. The multiple
scattering problem of the incoherent scattering is more demanding because the sample geometry – I assumed a
slab – matters. I tried to solve this problem analytically, and used Monte Carlo simulations. From all concepts I
derived a strategy for a computer program that is capable to remove multiple scattering effects. As a side aspect,
I could also remove resolution effects.

In this article the multiple scattering problem for small angle scatter-
ing is revisited. In early times the methods were developed by Schelten
and Schmatz [1], and a program for simulating or removing multiple
scattering was proposed by Monkenbusch [2]. The proposed formalism
is capable to work on anisotropic scattering patterns. The important
prerequisite is that the scattering appears at small angles where the
Ewald sphere is flat, and the sample thickness does not vary as a
function of the scattering angle. These methods basically apply for
the coherent scattering portion while the incoherent scattering needs
to be considered separately. For neutrons the incoherent scattering
emerges from point scatterers, which facilitates the handling. Whatever
radiation is used in the experiment, for my purpose, I assume that the
incoherent scattering is rather flat in the experimental 𝑞-range, which
means that the underlying scattering centers are small compared to 𝑞−1max,
i.e. the reciprocal largest scattering vector 𝑞max. Apart from that, the
sample thickness usually varies as a function of the scattering angle.
For the slab geometry, basically no signal is detectable in the lateral
direction. Early studies from Chandrasekhar [3] focused on the multiple
scattering problem quite generally, but the proposed mathematical
algorithms do not converge very well. So, even for simple incoherent
scattering, the math stays quite difficult.

Our approach uses differential equations for describing the multiple
scattering problem. I assume that the different scattering events take
place at well-separated points inside the sample, i.e. that the neutron
leaves the coherence volume before it is scattered a second time. Coher-
ent multiple scattering would lead to more complicated effects that are
known as Mie scattering for light and are also discussed for ultra small
angle X-ray scattering [4]. Differential equations make the transfer
of neutrons between different channels very clear and the incoherent
scattering problem can be implemented easily (see Fig. 1). I distinguish
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within the channels the primary intensity 𝐼0, the coherently scattered
intensity 𝑖1 (as a function of the scattering vector), the incoherent
scattered intensity in the forward direction 𝑗+ (as a function of scattering
angle), and the incoherent scattered intensity in the backward direction
𝑗−. From all the channels there are outgoing probabilities (proportional
to the corresponding scattering cross section), and possibly incoming
probabilities. I assumed that a once incoherently scattered neutron
does not experience considerably large changes by coherent scattering.
The primary intensity, and the coherent scattering can be derived
analytically. For the incoherent scattering I tried an analytic approach
that makes it difficult to implement boundary conditions. Therefore,
I applied Monte Carlo computer simulations to describe the overall
multiple scattering of a sample. I chose a microemulsion that scatters
strongly enough to generate multiple scattering. From the example I
learned which properties of the scattering curves are essential. Then, a
general strategy for removing multiple scattering is proposed.

1. Analytical approach for the slab geometry

When describing multiple scattering phenomena analytically, the
best way is using differential equations for characterizing the transfer
of intensity between different channels. I assumed the slab geometry
for the sample with a thickness 𝑑. All channels are a function of the
normal position 𝑥 and of the scattering angle 𝜗, which also connects
to the scattering vector 𝐪 with the modulus 𝑞 = |𝐪| = 4𝜋 sin(𝜗∕2)∕𝜆.
The wavelength of the neutron is 𝜆. Probabilities for the transfer
between different channels are described by a cross section and the
intensity, from which the contribution emerges. I know the following
cross sections for coherent scattering 𝛴c, for incoherent scattering 𝛴i
and for absorption 𝛴a (and abbreviate 𝛴ia = 𝛴i +𝛴a and 𝛴t = 𝛴ia +𝛴c).
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Fig. 1. Explanation for the different channels that neutrons can take from different
scattering events. All intensity emerges from the primary intensity 𝐼0, and can end as
coherent (𝑖1) or incoherent scattering in the forward (𝑗+) or backward (𝑗−) direction. The
scattering probabilities are proportional to the scattering cross sections 𝛴𝑥, with 𝑥 being
‘c’ for coherent, ‘i’ for incoherent and ‘a’ for absorption.

All contributions are summed up, partially from different emerging
channels and/or directions, and describe the change of the channel
intensity with the position 𝑥. In this way, I obtain the following integro
differential equations:

𝜕𝑥𝐼0(𝑥) = −𝛴t𝐼0(𝑥) (1)

𝜕𝑥𝑖1(𝑥,𝐪) =
𝑑𝛴c
𝑑𝛺

(𝐪)𝐼0(𝑥)

+ ∫
𝑑𝛴c
𝑑𝛺

(𝐪 ′ − 𝐪)𝑖1(𝑥,𝐪 ′)𝑑2𝛺′

− 𝛴t 𝑖1(𝑥,𝐪) (2)

𝜕𝑥𝑗+(𝑥, 𝜗) =
𝛴i
4𝜋

(

𝐼0(𝑥) + 𝐼1(𝑥) + ∫
𝑗+ + 𝑗−
cos 𝜗

𝑑2𝛺
)

− 𝛴ia
𝑗+(𝑥, 𝜗)
cos 𝜗

(3)

−𝜕𝑥𝑗−(𝑥, 𝜗) =
𝛴i
4𝜋

(

𝐼0(𝑥) + 𝐼1(𝑥) + ∫
𝑗+ + 𝑗−
cos 𝜗

𝑑2𝛺
)

− 𝛴ia
𝑗−(𝑥, 𝜗)
cos 𝜗

(4)

Mathematically, I can distinguish between more channels than experi-
mentally possible (see Fig. 1). The primary intensity 𝐼0 is interpreted
as the source beam that only gets weaker inside the sample from
scattering processes. The decay of the primary intensity along the
normal direction of the slab is described by the differential operator 𝜕𝑥,
while the probability of the decay is proportional to the total scattering
cross section 𝛴t and the primary intensity itself. The primary beam takes
the full primary intensity 𝐼 at the entrance as one boundary condition.
The coherent scattering channels 𝑖1 collect intensity from the primary
beam and the other coherent channels due to multiple scattering,
and lose intensity for the same reason. The cross-talk (i.e. coherent
multiple scattering) between the different scattering channels 𝑖1(𝑥,𝐪)
emerges from all coherent scattering channels 𝑖1(𝑥,𝐪′) with the cross
talk probability 𝑑𝛴c∕𝑑𝛺(𝐪′ − 𝐪). And the range of 𝐪′ is connected to
the angular range 𝛺′. On this level, I idealize the 2-dimensional 𝐪-
plane as flat in contrast to the real Ewald sphere. This means, that I stay
in the SANS regime for the coherent single scattering and the multiple
scattering. The two incoherent functions 𝑗± cover the full angular space
in the forward and back direction. So the angle 𝜗 only covers the half-
space (0 to 𝜋∕2). The sign of Eq. (4) takes care of the correct orientation
of the solid angle. I separated the two half spaces from each other for
reasons of the boundary conditions: The back-scattering intensity is zero
at the exit of the sample 𝑥 = 𝑑, while the forward-scattering takes zero
at the entrance 𝑥 = 0 (so does 𝑖1). The effectively longer paths differing
from the 𝑥-directions are taken into account by the cosine terms (for the

incoherent scattering only). One has to keep in mind that, later in the
experiment, the coherent scattering and the incoherent scattering in the
forward direction superimpose and cannot be distinguished as a bare
intensity anymore.

I can define the overall coherent scattering intensity by a similar
integration 𝐼1(𝑥) = ∫ 𝑖1(𝑥,𝐪)𝑑2𝛺 = 𝜆2

(2𝜋)2 ∫ 𝑖1(𝑥,𝐪)𝑑2𝐪. The according
differential equation (see Eq. (2)) would read then 𝜕𝑥𝐼1 = 𝛴c𝐼0 −𝛴t𝐼1 +
𝛴c𝐼1. This indicates that the multiple scattering processes do not affect
the behavior of the integral coherent intensity. The integral coherent
scattering intensity collects intensity from the primary beam and loses
intensity to the incoherent channels. Eqs. (3)–(4) treat redistribution
effects due to the incoherent scattering only. This means that after a first
incoherent scattering process a second coherent scattering process will
not show a huge effect. If the main coherent scattering is concentrated
at small angles this approximation is quite good and so these possible
corrections can be neglected. A wide-angle scattering law introduces
atomic and/or molecular structures that are usually observed at large
angles and beyond the Ewald sphere. I assume that these contributions
are small compared to the incoherent signal, and do especially not show
significant multiple scattering. Usually, the content of hydrogenous
materials needs to be reasonably high to cause multiple scattering and
then the atomistic structures scatter weakly [5].

The different scattering contributions can be solved sequentially.
For the primary intensity I obtain 𝐼0 = 𝐼 exp(−𝛴t𝑥). The total coherent
scattering is described by 𝐼1 = 𝐼(− exp(−𝛴t𝑥)+exp(−𝛴ia𝑥)). It has a max-
imum at 𝑥 = ln(𝛴t∕𝛴ia)∕𝛴c and the ideal sample thickness 𝑑 is chosen
accordingly for maximum information of the scattering experiment.

The multiple coherent scattering solution is obtained by using
the Fourier transformation. Any function in 𝐪-space will be trans-
formed to reciprocal 𝐫-space via �̃�(𝐫) = 1

2𝜋 ∫ 𝑎(𝐪) exp(i𝐪𝐫)𝑑2𝐪. The back-
transformation is done by the expression 𝑎(𝐪) = 1

2𝜋 ∫ �̃�(𝐫) exp(−i𝐪𝐫)𝑑2𝐫.
At this point, the formalism describes anisotropic scattering completely
right. For isotropic scattering, the Fourier transformation can be carried
out in one dimension according to �̃�(𝑟) = ∫ ∞

0 𝑎(𝑞)𝑞𝐽0(𝑞𝑟)𝑑𝑞 and for the
back-transformation according to 𝑎(𝑞) = ∫ ∞

0 �̃�(𝑟)𝑟𝐽0(𝑞𝑟)𝑑𝑟, both known
as Hankel transformation of zeroth order. At any point, the reader
may go back to anisotropic scattering by dealing with the full vectorial
dependence on 𝐫. The already well-known [1,2] analytical solution
reads then:

𝚤1(𝑑, 𝑟) = 𝐼 2𝜋
𝜆2

(

exp

(

𝜆2

2𝜋
𝑑𝛴c
𝑑𝛺

(𝑟)𝑑

)

− 1

)

exp(−𝛴t𝑑) (5)

This solution also includes the integral intensity solution 𝐼1 according to
𝛴c =

𝜆2

2𝜋
𝑑𝛴c
𝑑𝛺 (0) and 𝐼1 =

𝜆2

2𝜋 𝚤1(𝑑, 0). Note, that for small scattering signals
the single scattering solution is obtained asymptotically (exp(𝜖)−1 ≈ 𝜖).
The difficulty of this equation is the separation of the incoherent and
coherent scattering (say in terms of 𝛴c and 𝛴i or 𝑖1 and 𝑗+) that will be
observed as a sum on the detector. The manuscript will deal with some
considerations how to separate these contributíons best. The transmis-
sion 𝑇 = exp(−𝛴t𝑑) only measures the total scattering probability 𝛴t .
The whole Eq. (5) can be solved for the desired macroscopic cross section
𝛴c according to:

𝑑𝛴c
𝑑𝛺

(𝑟) = 𝑑−1 ⋅ 2𝜋
𝜆2

⋅ ln
(

𝜆2

2𝜋
𝚤1(𝑑, 𝑟)
𝐼𝑇 𝑑

𝑑 + 1
)

(6)

Again for single scattering processes, the simplification ln(𝜖+1) ≈ 𝜖 leads
to the simple absolute calibration formula 𝑑𝛴c∕𝑑𝛺(𝑞) = 𝑖1(𝑑, 𝑞)∕(𝐼𝑇 𝑑)
that is usually applied to any small angle scattering data. Following this
idea, I can define the apparent macroscopic cross section with multiple
scattering included.

In the following I discuss how the analytically separated channels
add up on the detector and what finite resolution will do to them. The
total intensity on the detector is a simple sum of the primary intensity,
the coherently and incoherently scattered intensity, according to:

𝑖tot (𝑑, 𝜗) = 𝐼0(𝑑)𝛿(𝜗) + 𝑖1(𝑑, 𝑞) + 𝑗+(𝑑, 𝜗) (7)
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