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A B S T R A C T

Passive neutron multiplicity counting relies on measurement of the spontaneous fission neutron yield, to estimate
the amount of 240Pu in the tested sample. To account for additional neutron sources in the sample, typically (𝛼, 𝑛)
reactions and induced fissions in the odd fissionable isotopes, the first three sampled moments of the neutron
count distribution are used in an inversion formula that quantifies the amplitude of all three neutron sources.
When solving the set of equations corresponding to the inversion formula, the first three factorial moments of
the fission multiplicity distribution (both the spontaneous and induced fission) are used. Thus, any uncertainty
on the nuclear data and the numeric values of the neutron multiplicity moments, is bound to create a parametric
uncertainty on the estimated mass. So far, most studies on the uncertainty associated with the nuclear data are
experimental by nature, often focusing on a better estimation of the factorial moments and a viable uncertainty
estimation on the reported values.

Since the inversion formula is non-linear, the error propagation from the multiplicity moments to the mass
is also non-linear, and might have a very strong dependence on the sample parameters. In the present study,
we formulate mathematical formulas that describe the error propagation from the factorial moments of the
fission multiplicity to the mass, and implement the formulas to quantify the uncertainty in terms of the sample
characteristics. For validation, the computational results are then compared with experimental results.

1. Introduction

Passive Neutron Multiplicity Counting (NMC) relies on measurement
of the spontaneous fission neutron yield, to estimate the amount of
240Pu in the tested sample. Due to the relative transparency of structure
materials to neutron flux, NMC methods have been proven to be a very
efficient for nondestructive analysis of poorly characterized impure sam-
ples. To account for additional neutron sources in the sample, typically
(𝛼, 𝑛) reactions and induced fissions in the odd fissionable isotopes,
the first three sampled moments of the neutron count distribution
are used in an inversion formula that quantifies the amplitude of all
three neutron sources [1]. There are several ways to implement NMC
methods, differing in the type of the moments sampled [2]: the most
common implementation is multiplicity method, where the so called
Singles, Doubles and Triples (together, referred to as the Multiplicity
Moment) are sampled [1], but equivalent results may be obtained by
sampling the central moments of the count distribution [3,4].

* Corresponding author at: Physics Department, Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva, Israel.
E-mail address: cdubi@bgu.ac.il (C. Dubi).

Using the Multiplicity method, the sampled moments (Singles-
𝑆, Doubles-𝐷 and Triples-𝑇 ) are connected with sample parameters
through the following set of equations:
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(1.1)

The parameters in Eq. (1.1) are as follows: the experimentally
measured observables are 𝑆,𝐷 and 𝑇 . The three unknowns are the
total source rate 𝐹 , the spontaneous fission fraction 𝑈 and the leakage
multiplication factor 𝑀𝐿. The set of equations is defined by several
external parameters: the detection efficiency 𝑃𝑑 , the Doubles and Triples
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gate utilization factors 𝑓𝑑 and 𝑓𝑡 and finally the first three factorial
moments of the spontaneous fission multiplicity 𝐷𝑆,𝑖, 𝑖 = 1, 2, 3, and
the first three factorial moments of the induced fission multiplicity
𝐷𝐼,𝑖, 𝑖 = 1, 2, 3. Once the set of equations is solved, the spontaneous
fission rate is given by 𝐹 ×𝑈 , and the mass of 240Pu effective is estimated
by dividing it with the spontaneous fission rate per gram of 240Pu, 473.5
[fissions/sec] [1].

The leakage multiplication factor, which quantifies the contribution
of the induced fissions, is defined by 𝑀𝐿 = 1−𝑃𝑓

1−𝐷𝐼,𝑖𝑃𝑓
, where 𝑃𝑓 is the

fission probability of a neutron in the sample [5]. Since 𝑃𝑓 it is a more
natural quantity, we will hereon refer to 𝑃𝑓 rather than 𝑀𝐿.

Since they appear in the set of Eq. (1.1), any biasing on the
numeric values of the neutron multiplicity moments is bound to bias
the estimated mass of 240Pu. This observation is obviously not new,
and the mass uncertainty was treated before. However, most studies
on the uncertainty associated with the nuclear data are experimental by
nature, often focusing on a better estimation of the factorial moments
and a viable uncertainty estimation on the reported values [6,7]. Since
the inversion formula is non-linear, the error propagation from the
multiplicity moments to the mass is also non-linear, and might have
a very strong dependence on the sample parameters. In [8,9] a more
integrated approach is considered, by numerical and experimental
sensitivity analysis of NMC measurement. While both studies offer a
good overview on the related uncertainties, we believe that the error
propagation related to nuclear data was not treated in a complete
fashion: both offer a short discussion on the effect of uncertainty of the
nuclear data (see section 3.3 [8]), but the conclusion is fairly obscure,
claiming that the uncertainty can be included in the uncertainty on the
detection efficiency.

The outline of the present study is to develop explicit formulas for
the uncertainty propagation from the nuclear data, manifested in the
factorial moments of the fission neutron multiplicity distribution, on to
the final outcome of the measurement, the estimated mass of 240Pu.

2. Mathematical formulas for the error propagation of the factorial
moments

2.1. The uncertainty associated with each factorial moment

The set of Eqs. (1.1) can be formally written as a set of three non
linear equation of the form:
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For fixed values of 𝑆, 𝑇 and 𝐷, the solution of the set of equation defines
an implicit inverse function
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If we denote by 𝛥𝐷𝑆,𝑖, (𝛥𝐷𝐼,𝑖), 𝑖 = 1, 2, 3 the uncertainty related to the
spontaneous (induced) fission multiplicity factorial moments, than the
uncertainty on each of the parameters 𝐹 ,𝑈 and 𝑃𝑓 associated with each
factorial moment can be estimated by:
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, (2.4)

for 𝑋 = 𝑆, 𝐼 and 𝑖 = 1, 2, 3.
The estimations in (2.4) are of little use in their present form,

since 𝐹 ,𝑈 and 𝑃𝑓 are implicit functions of factorial moments, and
the derivatives are not known. To obtain the derivatives in an explicit
form, there is a standard methodology, which we will introduce shortly.

We will only demonstrate it for one factorial moment, 𝐷𝑆,1, as the
implementation is exactly the same for the rest.

By derivation of all three equation in (2.2) with respect to 𝐷𝑆,1,
assuming the 𝑆,𝑈 and 𝑃𝑓 are functions of 𝐷𝑆,1, we obtain
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And hence the partial derivatives of 𝑆,𝑈 and 𝑃𝑓 are determined by:
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(2.5)

Equality (2.5) describes the relation between the implicit derivatives
of 𝑈, 𝐹 and 𝑃𝑓 with respect to 𝐷𝑆,1 and the explicit derivatives of
𝐹𝑖(𝑖 = 1, 2, 3) with respect to 𝐹 ,𝑈, 𝑃𝑓 and 𝐷𝑆,1. Before we continue,
some remarks are due:
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, which defines the

set of equations, is independent (explicitly) of 𝐷𝑆,1. Therefore,
when writing the set of equations for any other factorial moment,
the coefficient matrix 𝐴 will not change.

2. When solving a set of equations, there is always the question
whether or not the coefficient matrix is invertible. While we did
not prove that it is always invertible, from a practical point view
point, it is fair to assume that it is, for three reasons: first, the
conditions for 𝐴 to be invertible are exactly the conditions for a
unique solution to the set of equations, which is always assumed.
Second, the conditions for 𝐴 to be invertible are extremely
generic (for instance, the determinant must not be 0). Third,
practice shows that it is, eventually, invertible.

3. Once 𝛥𝐷𝑋,𝑖
𝐹 and 𝛥𝐷𝑋,𝑖

𝑈 are estimated (𝑋 = 𝑆, 𝐼 and 𝑖 = 1, 2, 3),
we estimate the uncertainty on the mass by

𝛥𝐷𝑋,𝑖
(𝑀𝑎𝑠𝑠) =

𝛥𝐷𝑋,𝑖
𝐹 × 𝑈 + 𝛥𝐷𝑋,𝑖

𝑈 × 𝐹

472.5
(2.6)

4. At a first glance, it might seem that the uncertainty does not
depend on the sampled moments 𝑆, 𝑇 and 𝐷. The uncertainty
has an implicit dependence on 𝑆, 𝑇 and 𝐷, since the values of
𝐹 ,𝑈 and 𝑃𝑓 are determined by 𝑆, 𝑇 and 𝐷.

2.2. How to sum uncertainties?

Once the uncertainty associated with each factorial moment in
quantified, we encounter a question that often arises in uncertainty
quantification: how do we accumulate all the uncertainties into a single
error bar?

One of the most common approaches for accumulation of errors is
through a simple sum of squares. That is, for each variable 𝑉 (𝑉 = 𝐹 ,𝑈
or 𝑃𝑓 ), we estimate:

𝛥𝑉 =
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(
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𝑉
)2

(2.7)

But the use of Eq. (2.7) is questionable for two reasons. First, the
uncertainty on the factorial moments is not a statistical uncertainty,
but rather a constant biasing from the true value. Second, Eq. (2.7)
assumes that the error in all factorial moments is not correlated, which
is clearly not the case. To account for the correlation between the
moments we need information on the covariance, which (to the best
of our knowledge) is unavailable.
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