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A B S T R A C T

The development of the next generation of ultra-low energy antiproton and ion facilities requires precise
information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton
storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic
measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the
electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread
estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates.
Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects,
and present simulation results for the case of ELENA.

1. Introduction

Emittance measurement is essential in all particle accelerators and
transfer lines to control and provide the required beam quality. There
are many different ways to measure emittance ranging from simple
beam optics techniques to new and advanced setups such as the super-
sonic gas jet based beam profile monitor [1]. In this paper we focus on
expanding the capabilities of beam scraping through new data analysis
and determine the limits of such a technique using particle tracking
simulations.

Beam scraping enables direct access to information on the transverse
phase space amplitude. It also presents a high dynamic range very
suitable for getting information of low density long tails and halo mea-
surements. Indeed, scraping by collimators has been used to measure
beam halo diffusion and population in high energy colliders, e.g. in the
Large Electron–Positron collider (LEP) [2] and Tevatron [3] in the past,
and more recently in the Large Hadron Collider (LHC) [4].

Despite being destructive, the scraping method has also been used in
many hadron machines for emittance measurement. Concretely, due to
the simplicity of usage, it has been used with relatively low intensity
antiproton beams in the Antiproton Decelerator (AD) [5,6], and a
scraper device has been installed to measure emittances in the new
ELENA storage ring [7].

As mentioned before, beam scraping is a destructive measurement
technique. The beam is completely or partially removed by the scraper.
Apart from measuring transverse phase space dimensions of the beam,
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scrapers can be used as collimators to reduce the size and intensity of
the beam if necessary.

There are two types of scraper operation. In some cases the beam is
progressively driven into a fixed limiting scraper aperture by means of
steering magnets producing a local orbit bump. For instance, this is the
functioning principle of the so-called BEAMSCOPE (BEtatron AMplitude
Scraping by Closed-Orbit PErturbation) installed in the PS Booster at
CERN [8]. However, the most common scraper operation mode is to
move the scraper blades into the beam.

In order to directly access the information of the betatron phase
space, scraper devices are preferably placed at energy dispersion-free
positions in the optical lattice. For example, in the AD it is located in a
position with zero dispersion. This simplifies emittance measurements
since one does not have to deal with dispersive components. However,
unlike the AD, there is no position with zero dispersion along the ELENA
lattice. This will require a careful analysis of the finite dispersion on the
signal and the design of efficient algorithms taking it into account.

An additional challenge is the emittance measurement for non-
Gaussian beams. In several facilities, where electron cooling is a fun-
damental part and diffusion effects (rest gas and intrabeam scattering)
are also important, the beam can adopt highly non-Gaussian beam
distributions. For instance, beam profile measurements in the AD in
the past [9] have shown non-Gaussian transverse beam distributions
with a very dense core and long amplitude tails, generated during the
beam cooling process (stochastic and electron cooling). In recent years
such a core-tail beam structure in the AD has been confirmed using Gas
Electron Multiplier (GEM) based beam profile monitors [10,11].
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Fig. 1. Schematic of a scraper blade moving horizontally into a beam. The
ellipses represent the acceptances for a beam with zero momentum offset
(black), with positive momentum offset (red) and with negative momentum
offset (blue). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

After describing the principle of emittance measurements by scrap-
ing in Section 2, in Section 3 we briefly describe an algorithm for the
particular case of Gaussian beams and propose an algorithm to calculate
the emittance for arbitrary beam distributions. Simulations of emittance
measurement by scraping in ELENA are shown in Section 4, followed by
an analysis of various sources of errors. Finally, in Section 5 we draw
some conclusions and plan for further studies.

2. Emittance measurements by scraping

In the algorithms developed below, we seek to determine the RMS
value of the geometric transverse emittance, which may be defined
statistically as:

𝜖𝑟𝑚𝑠 = ⟨𝐽⟩ ≡ 1
2
⟨𝐴2

⟩ (1)

where 𝐴 is the amplitude of the particles in phase space, and 𝐽 the action
variable.

The principle of emittance measurements by scraping is based on a
limiting aperture moving slowly into the beam to progressively remove
the beam particles. Here, we consider the example of a metallic scraper
blade moving slowly (compared to the revolution frequency) into the
beam. Let us assume that the scraper aperture movement is slow enough
such that the remaining beam intensity can be safely approximated by
the fraction of the beam particles within the acceptance defined by the
scraper position. Fig. 1 is a phase space plot to illustrate a horizontal
scraper blade approaching the beam from the positive 𝑥-axis with a
positive dispersion 𝐷.

Let us consider the normalised betatron phase space:

𝑋𝛽 =
𝑥𝛽
√

𝛽
, 𝑋′

𝛽 = 𝑥′𝛽
√

𝛽 +
𝑥𝛽𝛼
√

𝛽
, (2)

where 𝑥𝛽 and 𝑥′𝛽 are the non-normalised particle betatron position
and divergence angle in the beam, respectively, and 𝛽 and 𝛼 are the
Twiss parameters in the corresponding transverse plane. The normalised
amplitude in phase space is then given by 𝐴 =

√

𝑋2
𝛽 +𝑋′2

𝛽 , i.e.

𝐴 ≡
√

2𝐽 =
√

𝑥2𝛽𝛾 + 2𝑥𝛽𝑥′𝛽𝛼 + 𝑥′2𝛽 𝛽, (3)

with 𝛾 ≡ (1+𝛼2)∕𝛽 and 𝐽 the action variable. The subindex ‘‘𝛽’’ refers to
the betatron component of phase space. If at the scraper position the first
order dispersion is 𝐷 ≠ 0 and we assume a relative particle momentum
offset 𝛿 ≡ 𝛥𝑝∕𝑝, then the total position and angle can be written in
terms of the betatron and dispersive contributions as 𝑥 = 𝑥0 + 𝑥𝛽 + 𝐷𝛿

and 𝑥′ = 𝑥′0 + 𝑥′𝛽 + 𝐷′𝛿, respectively, with 𝐷′ = d𝐷∕d𝑠. A displacement
(𝑥0, 𝑥′0) with respect to the reference closed orbit is also assumed.

A relative momentum offset 𝛿 > 𝛿𝑚𝑎𝑥 ∶= (𝑥𝑠 − 𝑥0)∕𝐷 corresponds to
a closed orbit inside the scraper blade at position 𝑥𝑠; thus the transverse
acceptance for parts of the initial beam with 𝛿 > 𝛿𝑚𝑎𝑥 vanishes. For
relative momentum offsets 𝛿 < 𝛿𝑚𝑎𝑥, the transverse acceptance is
determined by the distance 𝑥𝑠 − (𝑥0 + 𝐷𝛿) between the momentum
dependent closed orbit (𝑥0 + 𝐷𝛿) and the scraper position 𝑥𝑠. The
acceptance for lower (higher) momentum offset 𝛿 corresponding to the
blue (red) ellipse in Fig. 1 is larger (smaller) than for on-momentum
particles (black ellipse).

The maximum oscillation amplitude defining the transverse accep-
tance is a function of the momentum offset given by:

𝐴𝑚𝑎𝑥 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑠 − 𝑥0 −𝐷𝛿
√

𝛽
for 𝛿 < 𝛿max,

0 otherwise.
(4)

For the sake of clarity, the resulting acceptance in longitudinal and
transverse phase space is depicted in Appendix A (Fig. A.18).

In general, before scraping a beam can be characterised by a
distribution density:

𝜌(𝛿, 𝐴) = 𝜌𝑝(𝛿)𝜌T(𝛿, 𝐴), (5)

where the total density 𝜌(𝛿, 𝐴) can be represented as the product of
two densities: the synchrotron amplitude distribution 𝜌𝑝(𝛿), expressed
as a function of the relative momentum offset 𝛿, and the transverse
amplitude distribution 𝜌T(𝛿, 𝐴), which depends on A and intrinsically
on 𝛿 through the dispersive component of the position.

The phase space density is normalised as follows:

∫

+∞

−∞
d𝛿𝜌𝑝(𝛿) = 1, (6)

∫

+∞

0
d𝐴2𝜋𝐴𝜌T (𝛿, 𝐴) = 1. (7)

Here, we will further assume the case of a coasting beam (the
measurement of the emittance by scraping of a bunched beam may be
more complicated) and no transverse plane (𝑥–𝑦) cross-coupling.

Taking into account the acceptance limits above, the remaining
fraction of the beam in the machine with dispersion 𝐷 > 0 is determined
by the following integral:

𝐹+(𝑥𝑠) =
𝑁+(𝑥𝑠)
𝑁0

= ∫
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0
d𝐴 2𝜋 𝐴 𝜌T(𝛿, 𝐴), (8)

where 𝑁0 is the number of particles in the machine before scraping and
𝑁+(𝑥𝑠) is the number of particles left in the machine when the scraper
is at 𝑥𝑠.

Similarly, if the scraper is coming from the negative 𝑥-axis, we
obtain:

𝐹−(𝑥𝑠) =
𝑁−(𝑥𝑠)
𝑁0
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+∞

𝛿𝑚𝑎𝑥
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0
d𝐴2𝜋𝐴𝜌T(𝛿, 𝐴). (9)

The integrals above give the cumulative distribution functions (CDF)
of the beam loss. With this information one can obtain the corresponding
probability density functions (PDF) projected on 𝑥𝑠 from the derivatives
𝑓± = ±d𝐹±(𝑥𝑠)∕d𝑥𝑠,
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. (11)

An example of a CDF and its corresponding PDF for a Gaussian
distribution is shown in Fig. 2. Details of the derivation of the function
𝑓+ from 𝐹+ are shown in Appendix A.
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