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A B S T R A C T

We discuss the placement of extra sextupoles in a magnet lattice that allows to correct third-order geometric
resonances, driven by the chromaticity-compensating sextupoles, in a way that requires the least excitation
of the correction sextupoles. We consider a simplified case, without momentum-dependent effects or other
imperfections, where suitably chosen phase advances between the correction sextupoles leads to orthogonal
knobs with equal treatment of the different resonance driving terms.

1. Introduction

Nonlinear magnetic fields limit the performance of many storage
rings by reducing their dynamic aperture. Beam particles passing this
boundary of stability are doomed to hit the beam pipe or experiment
in an uncontrolled way. In high-energy colliders the enormous energy
stored in the beams requires to maintain these losses at a low level. In
synchrotron light sources lost particles interfere with the often delicate
experiments and in some cases require more frequent injections. In all
cases strategies are required to compensate the magnetic nonlinearities
due to fringe fields and eddy-currents in the superconducting high-
energy rings or the sextupoles needed to correct the very large chro-
maticities in the strongly-focusing synchrotron light sources.

The mechanism with which nonlinearities force particles to ever
increasing amplitudes is linked to the resonances they excite. Here by
resonance we mean a force that coherently accumulates, dependent
on the tunes 𝑄𝑥, 𝑄𝑦 and 𝑄𝑧 of the storage ring. In general there are
resonances in all three spatial dimensions but we restrict our discussion
to only treat horizontal and vertical direction and the resonances are
labeled by two integers 𝑚 and 𝑛 by 𝑚𝑄𝑥 ± 𝑛𝑄𝑦. Each multipole in the
ring drives a number of resonances and it is possible to analytically
calculate its contribution. This opens up the possibility to theoretically
analyze different configurations and design compensation schemes in an
optimum way.

Sometimes it is possible to build compensating schemes into the mag-
netic lattice during the design phase. An ingenious example is described
in [1,2] where the chromaticity-correcting sextupoles are arranged in
such a way that they compensate all geometric aberrations up to second
order. If solving the problem before building the accelerator is not
possible, schemes are needed to identify and determine the excitation
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of correction magnets. Linear combinations of driving these magnets in
‘teams’ are often called ‘knobs’. A recent example is given in [3] where
linear combinations of sextupoles are constructed to correct individual
resonances. In that report the placement of the sextupoles is given
before-hand and the authors construct orthogonal ‘resonance-control
knobs’ from an elaborate mathematical analysis. Even the correction
of the betatron-coupling in the LHC requires ‘[knobs] . . . as orthogonal
as possible using the minimum possible skew quadrupolar strength’ [4].

In our analysis we investigate whether there is an optimum place-
ment of correction magnets, in our case sextupoles, that allows us to
correct the resonances with the least effort in the sense that the required
excitation of the correction magnets is as small as possible. This is
advantageous because weaker correction elements will generate weaker
higher-order aberrations. A trivial counter-example of a system that
requires stronger magnet excitations than necessary is based on two
steering magnets that are close to each other. Both can change the
angle of the beam, but in order to cause a transverse position offset,
both magnets need to be powered with large currents, but with opposite
polarity. In essence the magnets are fighting each other. A simple cure
is to place the magnets at locations with a betatron phase-advance of
90 degrees apart. In that case both changes, in angle and position, are
equally possible.

In this report we discuss a scheme that generalizes the concept with
perfect phase advances between sextupoles and find a configuration
to control the amplitude and the phase of the 𝑄𝑥, 3𝑄𝑥, 𝑄𝑥 + 2𝑄𝑦, and
𝑄𝑥 −2𝑄𝑦 resonances is accomplished by orthogonal knobs driving eight
independently powered sextupoles. The orthogonalization is built into
the lattice via a suitable placement of the sextupoles. The inspiration for
this idea came from earlier work, by one of the authors, on the correction
of skew quadrupole resonances in the LHC [5].
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Fig. 1. A beamline with four sextupoles placed at locations with phase advances
𝜙1, 𝜙2 and 𝜙3 to the reference point which is chosen to be the location of the
fourth sextupole.

In the following sections we first describe the method in the one-
dimensional case where we correct amplitude and phase of the 𝑄𝑥 and
3𝑄𝑥 resonance. In the subsequent section we generalize this to the four-
dimensional case and verify the results by tracking simulations. Finally
we offer a suggestion of how to implement this in a lattice.

2. One-dimensional sextupoles

We use a Hamiltonian formalism and tools from Lie algebra in order
to analyze different sextupole setups. In particular we make use of the
similarity transformation [6–8] that allows Hamiltonians to be moved
to different locations and the Campbell–Baker–Hausdorff (CBH) formula
to concatenate Hamiltonians into a single, effective Hamiltonian.

Let us begin by finding the resonance driving terms (RDTs) from a
one-dimensional sextupole. The Hamiltonian for a sextupole is given by

𝐻 = 𝑘𝛽3∕2�̄�3 (1)

where 𝑘 = 1
6𝑘2𝑙 is the integrated sextupole strength normalized to

the beam energy, 𝛽 is the beta function from the linear motion and 𝑥
is the position in normalized phase space coordinates. We can move
the Hamiltonian using the similarity transformation and in normalized
phase space the linear map is a rotation with phase advance 𝜙. At the
new location we have �̄� = 𝑥 cos𝜙−𝑥′ sin𝜙 and the Hamiltonian is given
by

𝐻 = 𝑘𝛽3∕2(𝑥 cos𝜙 − 𝑥′ sin𝜙)3. (2)

We expand this expression and make use of trigonometric identities
such as cos3(𝜙) = 1

4 [cos(3𝜙) + 3 cos(𝜙)]. Furthermore, we express the
coordinates in action–angle variables (𝑥 =

√

2𝐽 cos𝜓, 𝑥′ = −
√

2𝐽 sin𝜓)
and we find

𝐻 = 𝑘
4
[

cos(3𝜙)(2𝐽𝛽)3∕2 cos(3𝜓) + sin(3𝜙)(2𝐽𝛽)3∕2 sin(3𝜓)

+ 3 cos(𝜙)(2𝐽𝛽)3∕2 cos(𝜓) + 3 sin(𝜙)(2𝐽𝛽)3∕2 sin(𝜓)
]

(3)

where we have four RDTs with amplitudes depending on the phase
advance 𝜙. We can add more sextupoles to the beamline and move them
all to the same reference point. To first order the concatenation of the
Hamiltonians involves only addition of the Hamiltonians and in order
to calculate the third-order part of the effective Hamiltonian we do not
need higher-order terms in the CBH formula.

To control all four RDTs independently we need at least 4 sextupoles.
We assume four sextupoles with strengths {𝑘1, 𝑘2, 𝑘3𝑘4}, placed at
locations with equal beta functions and phase advances {𝜙1, 𝜙2, 𝜙3, 𝜙4}
to the reference point which we, without loss of generality, set to be
at the location of the fourth sextupole (i.e. 𝜙4 = 0). Fig. 1 shows a
schematic of the setup and the phase advances depend on the relative
phase advances between the consecutive sextupoles as

𝜙1 = 𝛥𝜙12 + 𝛥𝜙23 + 𝛥𝜙34

𝜙2 = 𝛥𝜙23 + 𝛥𝜙34

𝜙3 = 𝛥𝜙34.

(4)

Table 1
Phase advances.

Sextupole 𝜙 [degr.]

1 135◦

2 90◦

3 45◦

4 0◦

The first resonance driving term in (3) is given by addition of the
contributions from the four sextupoles and we find

𝐻cos(3𝜓) =
1
4
(2𝐽𝛽)3∕2 cos(3𝜓)

×
[

𝑘1 cos(3𝜙1) + 𝑘2 cos(3𝜙2) + 𝑘3 cos(3𝜙3) + 𝑘4
]

(5)

and similarly for the other RDTs. We can express the effective Hamilto-
nian at the reference point to first order in sextupole strengths as linear
system ⃗ =𝑀�⃗� where ⃗ contains the coefficients for the different third-
order RDTs, 𝑀 is a matrix with the trigonometric identities depending
on the phase advances from each sextupole to the reference point and �⃗�
contains the sextupole strengths. Explicitly we have
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4
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(6)

where { 1
4 (2𝐽𝛽)

3∕2 cos(3𝜓)} denotes the coefficient of the 1
4 (2𝐽𝛽)

3∕2

cos(3𝜓) term.
It is well-known that for 𝛥𝜙12 = 𝛥𝜙23 = 𝛥𝜙34 = 180◦ all resonances

cancel if all sextupoles have the same excitations 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 [9].
However, such phase advances are not suitable to control the resonance
driving terms since in this case the matrix 𝑀 is singular and implies
that the system cannot be inverted and the individual RDTs cannot be
controlled. Instead we look for a setup with four sextupoles with opti-
mum orthogonality for the control of the different RDTs which means
that we require the rows of matrix 𝑀 =𝑀(𝜙1, 𝜙2, 𝜙3) to be orthogonal.
Table 1 shows the phase advances between the four sextupoles and the
reference point that yields a solution with a 45◦ separation between all
sextupoles and this results in optimum orthogonality since the resulting
matrix
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(7)

has rows that are orthogonal. In fact, this matrix has condition number
equal to unity, which indicates that all eigenvalues of the matrix are
equal as shown in Appendix A. There we show that optimality requires
the response matrix 𝑀 to have condition number unity. This in turn
guarantees that RDTs of equal magnitude require the same rms strength
of correction. In other words, all RDTs are controlled equally well. Since
the condition number is unity, the columns of 𝑀 are also orthogonal. If
we factor out

√

2 from 𝑀 and absorb this in ⃗ instead we are left with
an orthogonal matrix, that is, a matrix that fulfills 𝑀𝑇𝑀 = 𝐼 .

In this section we found a setup with four sextupoles separated with
phase advances yielding optimum orthogonality of the knobs for the
different third order resonances. Next we investigate similar setups for
two-dimensional sextupoles.
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