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A B S T R A C T

We present a detailed study using the skew quadrupoles in the Canadian Light Source storage ring lattice to
control the parameters of a coupled lattice. We calculate the six-dimensional beam envelop matrix and use it to
produce a variety of objective functions for optimization using the Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm. MOPSO produces a number of skew quadrupole configurations that we apply to the storage
ring. We use the X-ray synchrotron radiation diagnostic beamline to image the beam and we make measurements
of the vertical dispersion and beam lifetime. We observe satisfactory agreement between the measurements and
simulations. These methods can be used to adjust phase space coupling in a rational way and have applications
to fine-tuning the vertical emittance and Touschek lifetime and measuring the gas scattering lifetime.

1. Introduction

The electron beam in a synchrotron has properties that we seek
to control, such as height, width, tilt and lifetime. We control these
parameters through the design and optimization of accelerators by using
models. In this paper, we use a linear model of the Canadian Light
Source (CLS) storage ring to calculate skew quadrupole settings in order
to control the vertical size, tilt and lifetime of the beam.

It is only possible to create an ideal synchrotron in simulation. We
strive to make the real machine as close as possible to the ideal one, but
this pushes the construction and alignment of the magnets to the highest
precision that is technically possible. It is convenient and useful to study
an ideal model of a light source because the simplifying assumptions
allow for convenient and intuitive parameterizations of beam dynamics.

Even in an ideal electron synchrotron we cannot have zero beam size
due to the emission of synchrotron radiation. The horizontal emittance
in an ideal electron synchrotron is dominated by the emission of
synchrotron radiation in areas of non-zero dispersion giving [1,2],

𝜖𝑥0 = 𝐶𝑞
𝛾2

⟨

𝑥∕|𝜌|
3⟩

𝐽𝑥
⟨

1∕𝜌2
⟩ (1)

where

𝐶𝑞 ≡
55

32
√

3

ℏ
𝑚𝑒𝑐

, (2)

𝑥 ≡ 1
𝛽𝑥

[

𝜂2𝑥 +
(

𝛽𝑥𝜂
′
𝑥 −

1
2
𝛽′𝑥𝜂𝑥

)2]

, (3)

𝐽𝑥 is the horizontal damping partition number, 𝜌 is the bending radius
of the dipole magnets, 𝛽𝑥 is the horizontal betatron function, 𝜂𝑥 is the
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horizontal dispersion, 𝛾 is the relativistic Lorentz factor, ℏ is the Planck
constant divided by 2𝜋, 𝑚𝑒 is the electron mass and 𝑐 is the speed of
light.

Since the vertical dispersion is zero in an ideal electron synchrotron
the analogous vertical emittance is zero, 𝜖𝑦0 = 0. However, even in the
ideal case, the vertical beam size does not damp to zero because quanta
of synchrotron radiation are emitted with non-zero vertical momenta
and the electrons must recoil. This vertical excitation of the electron
beam is called the quantum limit of vertical emittance and we write [1]
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where 𝛽𝑦 is the vertical betatron function and 𝐽𝑦 is the vertical damping
partition number. We also note that 𝐽𝑦 = 1 for an ideal electron
synchrotron and that there is some disagreement in the literature as to
the proper form of Eq. (4) with some authors [3] multiplying the right
hand side by 1

2 .
The emission of synchrotron radiation also causes an energy spread.

The fractional energy spread of the electron beam is given by
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where 𝐽𝐸 is the longitudinal damping partition number.
The horizontal and longitudinal phase spaces are coupled through

the dispersion function. We add the horizontal beam size contributions
due to emittance and energy spread in quadrature to get the horizontal
beam size for an ideal electron synchrotron,
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Also, the longitudinal beam size depends on the horizontal dispersion
through the momentum compaction factor.

The vertical dispersion and betatron coupling are ideally zero,
so vertical phase space is completely decoupled from horizontal and
longitudinal. The vertical beam size for an ideal electron synchrotron is
given by

𝜎2𝑦 = 𝛽𝑦𝜖𝑦𝑞 . (7)

If we put numbers into Eqs. (1) and (4) for a third generation light
source we calculate values for 𝜖𝑥0 that are orders of magnitude higher
than 𝜖𝑦𝑞 . For example we use the optics code elegant [4] to calculate
𝜖𝑥0 = 17.9 nm and 𝜖𝑦𝑞 = 1.3 pm for the nominal CLS storage ring optics.
However, when we look at the beam on a synchrotron light monitor,
we see that the vertical beam size is significantly larger than that given
by Eq. (7). It is clear that our ideal, uncoupled approximation is not
sufficient for studying the vertical beam size.

We must consider coupling of the vertical phase space to the
horizontal and longitudinal phase spaces. In a real machine, there is
non-zero vertical dispersion, 𝜂𝑦. We will therefore have non-zero 𝜖𝑦0
given by
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This will give contributions to the squared vertical beam size of 𝛽𝑦𝜖𝑦0
and 𝜂2𝑦𝜎

2
𝛿 .

However, these additional contributions to the vertical beam size still
do not give satisfactory results. This becomes especially apparent when
operating near the coupling difference resonance 𝜈𝑥−𝜈𝑦 = 𝓁 where 𝜈𝑥 is
the horizontal tune, 𝜈𝑦 is the vertical tune and 𝓁 is an integer. Near this
resonance, the observed vertical beam size becomes very large and we
must take into account the exchange of emittance between horizontal
and vertical phase spaces.

If we have skew quadrupole strength 𝑘𝑠 distributed around the
synchrotron, we can calculate the integral
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where 𝜓𝑥 and 𝜓𝑦 are respectively the horizontal and vertical betatron
phases, 𝐿 is the ring circumference and 𝑠 is the longitudinal coordinate.
For an ideal machine there are no skew quadrupole terms so 𝜅 = 0.
However, a real machine will have non-zero 𝜅 and a perturbative
treatment of coupling predicts exchange between the horizontal and
vertical emittances. If we define
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then emittance exchange occurs at a frequency of
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The horizontal and vertical emittances become [5]

𝜖𝑥(𝑠) =
𝜖𝑥0
4𝛺2

(

𝛥2 + 𝜅2cos2
( 2𝜋𝛺𝑠

𝐿

))

(13)

and

𝜖𝑦(𝑠) =
𝜖𝑥0
4𝛺2

𝜅2sin2
( 2𝜋𝛺𝑠

𝐿

)

(14)

giving the sum rule

𝜖𝑥(𝑠) + 𝜖𝑦(𝑠) = 𝜖𝑥0 (15)

which is valid everywhere around the synchrotron and justifies our
calling this process emittance exchange.

In the literature, one often sees the maximum emittances expressed
as a ratio [5,6],
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and elegant calculates 𝜅, 𝛥 and 𝑟 using the &twiss_output com-
mand. If we average the emittances over many turns, we get the ratio
⟨

𝜖𝑦
⟩

⟨𝜖𝑥⟩
=

𝜅2∕2
𝜅2∕2 + 𝛥2

(17)

which appears in Ref. [7].
We have calculated the contribution to vertical beam size from

coupling to the longitudinal phase space through vertical dispersion and
to the horizontal phase space through emittance exchange. However,
we are still left with an unsatisfactory situation. Even if we are able to
combine the various sources of vertical beam size in a meaningful way,
the models we have just discussed do not have a mechanism to describe
the tilt of the electron beam, which is observed as the corresponding
tilt of a photon beam on a diagnostic beamline. The synchrotron light
monitor at CLS shows a beam tilt of several degrees.

In this paper, we will study coupling using the full six-dimensional
beam-envelope matrix and compare simulated quantities against mea-
surements performed on the CLS storage ring. For simulations, we
will calculate the beam-envelope matrix using the optics codes AT [8]
and elegant. The AT function ohmienvelope() makes use of the
formalism of Ohmi, Hirata and Oide [9] and the elegant function
&moments_output uses a similar formalism.

We will compare these simulations against measurements using
the synchrotron light beam profile monitor and measurements of the
beam lifetime and dispersion. The measured vertical dispersion agrees
well with the simulations, provided we take special care to ensure
that we properly account for the beam position monitor (BPM) gains
and horizontal–vertical cross-talk of the BPM signals. We find a useful
parametrization for the beam lifetime
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where 𝜏𝑚 is the measured beam lifetime, 𝜏𝑔 is the gas scattering lifetime,
𝐶 is a constant and 𝜖𝐼𝐼 is the vertical-like eigenemittance calculated
by the optics codes, which we will discuss at length in the following
sections.

2. Coupling calculations

In order to perform any calculations, we need a model of the real
accelerator. We use the LOCO algorithm [10,11] to create an effective
model of the CLS storage ring. LOCO is an algorithm which takes a
model of an accelerator lattice and modifies it so that the simulation
outputs a response matrix and dispersion function that is comparable to
a measurement of the response matrix and dispersion.

We allow LOCO to adjust the gains and horizontal–vertical cross-talk
of the BPMs and the kick strength and the horizontal–vertical cross-talk
of the orbit correctors. We also allow LOCO to adjust the strengths and
rolls of the lattice quadrupoles. The resulting model is an effective model
because there are other sources of coupling, such as vertical dipoles and
vertically displaced sextupoles, which we assign to lattice quadrupole
rolls. However, the procedure yields a model that is sufficient for our
purposes and a more detailed model is likely not possible with the given
measured information.

The version of LOCO that we use has AT as its optics code [12],
so exporting the resulting lattice is trivial. We also export the lattice
quadrupole strengths and rolls to elegant and we find good agreement
between the two codes when computing machine functions.

Now that we have a model of our accelerator, we can perform
calculations on this model. We write the beam envelope matrix using
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