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A B S T R A C T

The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is,
however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on
the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for
designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae,
and we investigate the impact of higher order multipole components in a very low emittance lattice.

1. Introduction

New or upgraded third generation light sources will realize small
electron beam emittance of pico-meter regime, delivering high bright-
ness photon beams for the experiments. Multi-bend achromat (MBA)
lattices, where multiple dipole bending magnets per arc are installed, are
generally utilized, since the beam emittance is inversely proportional to
the third power of the deflection angle per dipole magnet. As the name
suggests, the dispersion function is suppressed at both ends so as not to
enlarge the electron beam size due to the energy spread at the location
of insertion devices.

The optical functions over the dipole magnet are adjusted to lower
the emittance. The -function is taken as a figure of merit [1]:

 = 𝛾𝜂2 + 2𝛼𝜂𝜂′ + 𝛽𝜂′2, (1)

where 𝛽, 𝛼 and 𝛾 are Twiss parameters, and 𝜂 and 𝜂′ are the dispersion
function and its derivative. The amount of emittance generated by
photon emission in the bending magnets is proportional to .

The optimal optical parameters to minimize the  function, resulting
in the theoretical minimum emittance, can be analytically found at least
for homogeneous dipole fields [2]. The minimization of  requires
rather small beta and dispersion functions through the dipole magnets,
and these values are determined by the length of the dipole magnet.
However, they are not realized in practice because the required focusing
is too strong and/or the arc length too long, and thus beam emittance
is normally well above the theoretical minimum emittance.

The longitudinal gradient bend (LGB), in which the magnetic field
varies along the beam orbit, is an effective method for reducing 
and the resulting beam emittance. Several studies can be found in the
literature, e.g. [3–6]. Intuitively, the emittance is lowered when more
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bending is applied at the location of low dispersion since the emission
of a synchrotron radiation photon increases the betatron oscillation
amplitude, depending on the magnitude of the energy loss and the
dispersion function. Therefore, the optimum field profile has a peak in
the middle of the dipole magnet [7].

Accelerator codes such as MADX [8], Bmad [9], Tracy [10] and
Elegant [11], are widely used to design storage ring lattices. An LGB,
however, is not yet a common accelerator element, and thus it is not
available in these codes. We have analyzed an LGB’s magnetic field
and derived a set of formulae to model it properly. In this paper, we
report on the analysis and discuss the LGB’s multipole components,
namely sextupole and octupole. In [6], they are only qualitatively
discussed whereas we evaluate the impact of these higher order terms
quantitatively.

2. Magnetic field description

2.1. Coordinate system and magnetic field

The coordinate system shown in Fig. 1 is used throughout this
paper. The coordinate of the magnet is represented by fixed Cartesian
coordinates, 𝑋–𝑌 –𝑍. The plane 𝑋–𝑍 corresponds to the dipole sym-
metry plane where the horizontal magnetic field components are zero,
𝐵𝑋 = 𝐵𝑍 = 0. On this plane, the vertical field component is given by

𝐵𝑌 = 𝐵𝑌 (𝑋, 𝑌 = 0, 𝑍) . (2)

The symbol 𝐵𝑌 will be used as the vertical field on the symmetry plane,
and 𝑌 = 0 is omitted hereafter.

The design closed orbit of the beam is normally on the symmetry
plane. We employ another coordinate system, 𝑥–𝑦–𝑠, moving along the
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Fig. 1. Coordinate system. See Section 2.1 for details.

Fig. 2. Path length variation in an infinitely short sector bend segment. The
path length 𝑙 depends on the horizontal deviation, 𝛥𝑥.

closed orbit. The axis 𝑠 points in the direction of the beam. The axis 𝑦
is always parallel to the magnet axis 𝑌 while the other axes are rotated
by the angle between 𝑍 and 𝑠 axes, 𝜃. The sign of 𝜃 is defined such that
the projection of the axis 𝑠 to the axis 𝑋 is pointing to negative 𝑋 when
the angle is positive.

It is convenient to set the origin of the 𝑋–𝑌 –𝑍 system to a point
where the axis 𝑠 coincides with the axis 𝑍, i.e. 𝜃 = 0 there. Such a point
is uniquely determined once the axis 𝑍 is defined unless the vertical
field component 𝐵𝑌 alters as in undulators, for example. Without loss
of generality, we employ a symmetric LGB, i.e. 𝜃 = 0 in the middle of
LGB, which can be the origin, and 𝐵𝑌 (𝑍) = 𝐵𝑌 (−𝑍).

2.2. Multipole expansion

The magnetic field is generally expanded into Taylor series, and the
multipole components are directly related to the series terms one by
one. We use the following definitions throughout the paper:

𝐵𝑦 =
∞
∑

𝑛=0

𝐵𝑛𝑥𝑛

𝑛!
, (3)

and the corresponding multipole strengths are

𝐾𝑛 =
𝐵𝑛
𝐵𝜌

, (4)

where 𝐵𝜌 is the magnetic rigidity of the beam. The number of poles is
2(𝑛 + 1), i.e. 𝑛 = 0 for the dipole field.

The above expansion is defined in the moving coordinate system
since the magnetic field acts on the beam particle following the closed
orbit with small transverse deviation.

Let us take an arbitrary location on the closed orbit, which we denote
by

(

𝑋0, 𝑍0
)

. The two coordinate systems are then connected as

𝑍 −𝑍0 = 𝑥 sin 𝜃0, (5)

and

𝑋 −𝑋0 = 𝑥 cos 𝜃0, (6)

where 𝜃0 is the angle between the 𝑍 and 𝑠 axes at
(

𝑋0, 𝑍0
)

. Hence we
get

𝐵0 = 𝐵𝑌
(
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)

(7)
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and so on. The first terms in 𝐵𝑛 (𝑛 > 0) originate at the transverse
gradient, and the second terms originate at the longitudinal gradient. It
is shown here that the longitudinal gradient generates the components
higher than dipole.

When the transverse gradient terms are zero, the magnetic field of
the LGB is a ‘‘rectangular-bend-like’’ field, where the field contour lines
are parallel to the axis 𝑋. A special case, the ‘‘sector-bend-like’’ field,
where the contour lines are parallel to the axis 𝑥 is discussed later,
although the rectangular-bend-like magnet may be preferable from the
manufacturing point of view.

2.3. Feed-up

The so-called natural focusing in the horizontal plane comes from
the geometric nature of sector bend magnets. It is naively expected that
a focusing is due to a transverse gradient. However, in a sector bend
magnet, the path length of a particle traveling off closed orbit is longer
or shorter than that of the ideal particle on the closed orbit. The bending
angle depends on the particle path, and thus the natural focusing arises
from a pure dipole field. This applies to the quadrupole component
as well, i.e., the quadrupole component included in a sector bend
generates sextupolar focusing. The quadrupole component discussed
here originates not only from the transverse gradient but also from the
longitudinal one. Feed-up refers to this process whereby an 𝑛th term
generates an (𝑛 + 1)th term.

We now discuss an infinitely short segment of a sector bend magnet
to formulate the ‘‘feed-up’’ described above. For the short segment, the
vertical field, 𝐵𝑌 , is constant along 𝑠 but depends on 𝑥.

As depicted in Fig. 2, the path length of a particle along the segment
is

𝑙 =
(

𝜌0 + 𝑥
)

𝜑0, (11)

where 𝜌0 is the bending radius and 𝜑0 is the bending angle of the
segment for the particle on the closed orbit. For the off-closed-orbit
particles, the deflection angle is

𝜑 = 𝐵𝑌 𝑙 (12)
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