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a b s t r a c t

Different approaches to the data analysis of beam position monitors in hadron accelerators are compared adopting
the perspective of an analog-to-digital converter in a sampling acquisition system. Special emphasis is given to
position uncertainty and robustness against bias and interference that may be encountered in an accelerator
environment.

In a time-domain analysis of data in the presence of statistical noise, the position calculation based on the
difference-over-sum method with algorithms like signal integral or power can be interpreted as a least-squares
analysis of a corresponding fit function. This link to the least-squares method is exploited in the evaluation
of analysis properties and in the calculation of position uncertainty. In an analytical model and experimental
evaluations the positions derived from a straight line fit or equivalently the standard deviation are found to be
the most robust and to offer the least variance. The measured position uncertainty is consistent with the model
prediction in our experiment, and the results of tune measurements improve significantly.

1. Introduction

Beam position monitors are non-interceptive detectors that are
crucial to the operation of linear accelerators, synchrotron accelera-
tors or storage rings. Exploitation of their signals gives access to a
wealth of information beyond the individual transverse bunch position,
including the more complex lattice optics measurements of fractional
tune, chromaticity, dispersion, beta functions, and phase advances. Fur-
ther dedicated measurements of intra-bunch oscillations, of transverse
impedances, and of high-intensity effects are routinely performed using
these systems. Nowadays signals are acquired in powerful sampling
systems which offer the freedom to analyze online the incoming data
stream with methods of digital signal processing in field programmable
gate arrays. The system performance depends on the quality of position
calculation.

The genesis and focus of this study has been the reliable operation
of FAIR synchrotrons [1] under several operational scenarios such as
stacking, multi-turn injection, bunch merging and splitting, longitudinal
bunch shrinkage during the acceleration ramp, while being least affected
at the same time by imperfections like an offset (bias) in amplifier
or analog-to-digital converter, or low-frequency ‘‘interference’’ in the
acquired signal. For these hadron accelerators several samples are
available even for the shortest bunches, and therefore the position
analysis can be carried out in time domain.
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Two topics were of special interest: position uncertainty, which re-
ceives little attention in available literature, and reliability in day-to-day
operation. The primary objective was the selection of the ‘‘best’’ analysis
judged by robustness, uncertainty and ease of implementation. One of
the difficulties for such a comparative study stems from contrasting
requirements, e.g. for ‘‘fast’’ turn-by-turn positions sometimes referred
to as ‘‘beam trajectory’’ and a ‘‘slow’’ averaged position over several
turns also referred to as ‘‘beam orbit’’. In this report, we propose a single
optimal approach for dealing with both the cases.

In the framework of a statistical analysis we have studied some
of the most common algorithms applied in the difference-over-sum
method. A new approach of position calculation on the foundation of
a least-squares analysis is presented. It offers a different view onto the
expected properties of results. The predictions of the analytical model
have been backed by measurements with the position monitor system
of the SIS-18 synchrotron at the GSI facility. The robustness was studied
by introduction of offsets or an external frequency to experimental data
prior to position and fractional tune analysis.

Section 2 introduces the beam position monitor system, the funda-
mental difference-over-sum method and our requirements for a robust
position analysis. Position algorithms are briefly discussed in Section 3.
Their relations to the least-squares method are established in Section 4
which are exploited to investigate properties of results in some more
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Fig. 1. Schematic of BPM data acquisition system consisting of BPM with
horizontal and vertical electrode pairs, four channel amplifier and ADC sampling
system.

depth. In Section 5 we present experimental data on uncertainty, a study
of position robustness against added interferences, and a comparison of
tune spectra. The latter proves that the analysis of derived quantities can
benefit significantly from an appropriate choice of position calculation
method. The conclusions drawn from our work are summarized in the
last section.

2. System layout and data analysis

2.1. Detector and hardware

We consider a linear horizontal beam position monitor (BPM) with
constant position sensitivity 𝑠𝑋 , a coefficient that relates the detector
output to a change in beam position. Fig. 1 illustrates a minimal
hardware setup consisting of symmetric electrode pair, amplifier, filter,
coaxial transmission line, and bipolar analog-to-digital converter (ADC)
system. BPM capacitance 𝐶 and amplifier input resistance 𝑅 form an CR
differentiator or high pass filter. Its transfer impedance 𝑍 is discussed
in [2] and tends to unity for our case of high-impedance in our frequency
range of interest. Hence, the recorded signals are proportional to the
beam current 𝑗𝑏𝑒𝑎𝑚.

For a fixed beam position, we assume a strict proportionality be-
tween left and right electrode signal, since the displacement currents
𝑗𝐿∕𝑅 induced by the pulsed beam are defined by the time derivative of
the electric field over the electrode surfaces:

𝑗𝐿(𝑡) ∝ 𝑗𝑅(𝑡) ∝ 𝑗𝑏𝑒𝑎𝑚(𝑡) (1)

Both electrode currents are supposed to be connected to a matched
amplifier pair, i.e. amplifiers of identical gains followed by a matched
filter which represents a versatile element that could be a band-pass
filter, a frequency down converter or any linear analog signal processor.
In the hardware setup of the SIS-18 hadron synchrotron at GSI, it is
simply an all pass filter. Following that is an ideal ADC of fixed, bipolar
input range and maximum input span 𝑉𝐹𝑆 . The filter output signals are
called 𝑆𝐿(𝑡) and 𝑆𝑅(𝑡), respectively, and preserve the proportionality
𝑆𝐿(𝑡) ∝ 𝑆𝑅(𝑡). After digitization, they are functions of the sample
number 𝑖 or sample time 𝑡𝑖 = 𝑖 ⋅ 𝑡𝑆𝑎 where 𝑡𝑆𝑎 is the sampling interval.

Fig. 2 presents a digitized signal recorded after acceleration in
the synchrotron SIS-18 where a smooth pulse shape is observed. 𝑁𝑆
indicates the number of signal samples, i.e. samples with an amplitude
above the baseline level. Between two bunches there are 𝑁𝐵 baseline
samples, and a subset of size 𝑁𝑂 may be used for baseline restoration.
The baseline droop caused by the AC coupling in the electronics and its
effect on position measurement is discussed in the next section.

The noise voltage 𝜎𝑉 , that is the uncertainty of a single ADC
datum, is defined by the standard deviation of a baseline (or offset)
measurement, performed when no external stimulus acts on the BPM
electrodes, or is given by the effective number of ADC bits whichever is
larger [3]. Hence, this definition of the uncertainty 𝜎𝑉 includes all noise
contributions along the signal chain. We assume a constant value for 𝜎𝑉
independent of the measured signal level. However, we should note that
the noise characteristics of a realistic amplifier and ADC cannot be fully
specified by a single number since the frequency spectra are not ‘‘white’’,
and therefore 𝜎𝑉 is not the same for all position analysis methods [4].

Fig. 2. Sum signal of bunches at the extraction flat-top for BPM V1. The
generated analysis intervals around the bunch for position calculation are
shown.

2.2. AC coupling, offset and baseline restoration

BPM electrodes and amplifier form an AC coupled system with high-
pass characteristic with lower cutoff frequency 𝑓𝑐𝑢𝑡 = (2𝜋𝑅𝐶)−1 [2]. At
hadron accelerators the case of high impedance is very common to boost
signal levels. For our 1 MΩ high impedance system 𝑓𝑐𝑢𝑡 ≈ 1.5 kHz, if a
capacitance 𝐶 = 100 pF is assumed. The baseline returns to zero with
a characteristic time constant 𝜏 = 𝑅𝐶 = 0.1 ms, a long time compared
to a typical revolution period 𝑡𝑝 in the microsecond region and below.
For repetitive bunches AC coupling leads to baseline drifts or offsets if
𝑡𝑝 ≪ 𝜏 as in the present case. Detailed discussions on this subject can be
found in [5,6].

For a single short bunch in a beam transfer line, this effect can
be neglected. If several bunches are transferred, the baseline offset
can become relevant depending on number and separation of bunches.
A stable, circulating beam in a synchrotron will result in a balanced
system with constant baseline offset as shown in Fig. 2. There, it
can be calculated directly from a subset of 𝑁𝑂 samples between two
bunches. For turn-by-turn data the offset 𝑂 can also be calculated from
the boundary condition of zero mean current (due to AC coupling).
We assume a constant value between two successive pulses of length
𝑡𝑠 = 𝑁𝑆 ⋅ 𝑡𝑆𝑎 separated by the repetition period 𝑡𝑝 = (𝑁𝑆 +𝑁𝐵) ⋅ 𝑡𝑆𝑎:

0 = ∫

𝑡𝑝

𝑡0=0
(𝑆(𝑡) − 𝑂) 𝑑𝑡 = ∫

𝑡𝑠

𝑡0=0
𝑆(𝑡) 𝑑𝑡 − ∫

𝑡𝑝

𝑡0=0
𝑂𝑑𝑡

= 𝐼 − 𝑂 ⋅ 𝑡𝑝 ⇒ 𝑂 = 𝐼
𝑡𝑝

(2)

Since the offset is proportional to the mean signal it stores informa-
tion on the average position on a slow timescale defined by 𝜏. But, for
fast beam movements the present offset value is an arbitrary number.
The same is true for stacked operation where baseline offset due to
the stored beam and new position of the last injection are entirely
decoupled.

Another problem is presented in Fig. 3. This irregular pulse was
recorded at injection into the synchrotron and shows no distinguishable
baseline. Other complex shapes may be generated during bunch merging
or splitting at a later stage of the synchrotron cycle. For such signals
the existing beam-based implementation of bunch detection at the SIS-
18 synchrotron [7] fails to generate stable analysis windows. Irregular
structures makes any restoration prone to systematic effects and limit
the achievable position accuracy since the offset is calculated from a
limited number of samples. In the last stage of the hardware, signal
offsets may be introduced when the ADC offset is drifting or incorrectly
adjusted. Therefore, we search for a position analysis that does not need
to differentiate between signal, baseline or offset samples and that is
independent of offsets in order to avoid baseline restoration altogether.
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