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a b s t r a c t

In the previous classical theory of the low-gain free-electron laser (FEL) oscillators, the electron is described as a
point-like particle, a delta function in the spatial space. On the other hand, in the previous quantum treatments,
the electron is described as a plane wave with a single momentum state, a delta function in the momentum
space. In reality, an electron must have statistical uncertainties in the position and momentum domains. Then,
the electron is neither a point-like charge nor a plane wave of a single momentum. In this paper, we rephrase
the theory of the low-gain FEL where the interacting electron is represented quantum mechanically by a plane
wave with a finite spreading length (i.e., a wave packet). Using the concepts of the transformation of reference
frames and the statistical quantum mechanics, an expression for the single-pass radiation gain is derived. The
spectral broadening of the radiation is expressed in terms of the spreading length of an electron, the relaxation
time characterizing the energy spread of electrons, and the interaction time. We introduce a comparison between
our results and those obtained in the already known classical analyses where a good agreement between both
results is shown. While the correspondence between our results and the classical results are shown, novel insights
into the electron dynamics and the interaction mechanism are presented.

1. Introduction

In the free-electron lasers (FELs) process, the low-quality of the
electron beam results in a low-gain in radiation power at which the
ratio of the output to the input field intensity is linear. In the low-gain
regime [1–5], it is necessary to use an optical cavity to generate high
brightness radiation after some round-trips of the radiation in the cavity.
As a consequence of the lack of suitable mirrors for short-wavelength
radiation such as x-rays, the light amplification should be achieved in a
single pass through a very long undulator magnet. Therefore, high-gain
FEL amplification is required within a single passage of a high-quality
electron beam through a long undulator [6–8]. In this regime, the
radiation power grows exponentially along the undulator. The low-gain
FEL oscillators have been experimentally demonstrated in the infrared
and ultraviolet (UV) regions [2,3]. On the other hand, it is widely known
that the high-gain Self-Amplified Spontaneous Emission FEL (SASE FEL)
is a potential candidate for the production of x-ray FELs [6]. Recently,
it has been proposed that an x-ray FEL is also feasible in an oscillator
configuration [9,10].

In Ref. [11], Madey first described the small-signal FEL gain us-
ing a quantum mechanical treatment where he used the Weizsacker–
Williams method to calculate the quantum transition rates. Since the
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publication of this notable paper, many other authors proved that
the FEL can be treated classically [12,13]. From a classical point of
view, an electron considered as a point-like particle executes transverse
oscillations that stimulate a coupling to the radiation fields through the
Lorentz force [12,14,15]. In the previous quantum treatments of the
low-gain regime [16–20], the electron is described by a plane wave
extended infinitely along the electron bunch, being a single momentum
state. In the physical world, the electron has no exact description,
but has quantum uncertainties in the position and momentum. In this
paper, the electron is considered as a wave packet (i.e., plane wave
with a finite spreading length). This model of the electron is more
rigorous and formally correct than the previous problematic models,
the classical model of the point-like particle or the quantum model of
the infinite plane wave. Using the wavepacket model of the electron, we
present different insights on the electron dynamics and the interaction
mechanism. The connections between our results and those of the
classical approach are discussed. It is noted that in the quantum theory
of high-gain regime FELs, the electron wave is assumed to be sufficiently
extended over the group of bunched electrons due to the collective
effect among electrons [21–23]. However, in this study, we focus on
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Fig. 1. Schematic view of a planar undulator magnet.

the low-gain regime of FELs where the case of the high-gain regime is
beyond the scope of this work.

In the low-gain regime of FEL, the bunching process is weak and
the single-particle treatment is applied. In this regime, the electrons are
assumed to be randomly distributed under the influence of Coulomb
repulsion forces between electrons. Since each electron is separated
from the surrounding electrons, the wave function of electrons cannot
be overlapped. Then, in the present work, the electron wave is assumed
to be finite in length, a wavepacket with a finite spreading length 𝓁.
The interaction between the electron and the radiation field is achieved
when the phase of the electron wave synchronizes with the phase of the
radiation field. The spreading length of an electron wave is termed as
the coherence length over which the phases of the single electron wave
and the field are synchronized. Then, this coherence length almost cor-
responds to the length of the emitted radiation pulse. Another physical
interpretation of the length of the electron wave can be given as follows.
Assuming isotropic separation among neighboring electrons, an electron
can be approximately represented by a plane wave confined in a box
whose volume is 𝓁3 [24,25]. In principle, the uncertainty in the electron
wave dimension, the length 𝓁, is unknown and should be obtained
experimentally. However, the maximum possible length of the electron
wave 𝓁max should be determined by the separation distance between the
electron and its neighboring electrons during the interaction process.
The maximum length of the electron wave 𝓁max, or the inter-particle
distance, is approximately related to the average electron density 𝑁𝑡
as 𝑁𝑡 ∼ 1∕

[

𝓁max
]3. It is noticed that the later relation between the

inter-particle spacing and the electron density is commonly used in
the weakly coupled plasma where the coulomb’s repulsive forces are
dominant.

Given these considerations, the quantum treatment based on the
above description of electron is valid as long as the coherence length
of the electron wave 𝓁 is larger than the radiation wavelength. The
finite length of the electron wave causes a momentum uncertainty and
then introduces a broadening to the spectrum of FEL radiation. In our
model, the interaction is interpreted by the coupling between electron
and EM waves and is realized at the synchronization between the phases
of both waves. Therefore, the spreading length of the electron wave
is understood as the radiation pulse length representing the classical
relation of the normalized spectral FWHM 𝛥𝜔∕𝜔 = 1∕𝑁𝑈 where 𝑁𝑈
is the number of undulator periods. The relaxation and interaction
times are conjugated with energy uncertainties and produce another
broadenings to the radiation spectrum. As will be shown in Section 4,
when the momentum uncertainty is neglected or assuming the electron
is a point charge, the FEL behavior is described in the time domain and
the previous classical results are attained from our results.

In this paper, the small-signal low-gain of FEL is calculated on
the basis of a quantum mechanical model for electrons. In Sections 2
and 3, the dynamics of the EM wave and electron, respectively, are
discussed. The EM wave is described classically and the electron is
represented to be a plane wave with a finite spreading length. By
choosing an appropriate moving frame [16], Maxwell’s equations for
the EM wave and the Schrödinger equation for electron wave are used
to derive an expression for calculating the single-pass radiation gain.

The expectation values are calculated by means of the density matrix
method considering the statistical nature of electrons. For generality,
we take into account the effect of electron relaxation that corresponds to
the energy spread and is represented by phase distortion in the electron
wave. In Section 4, the radiated power and the validity of our model
are shown. In Section 4, the expression of the gain obtained in the
moving frame is then transformed back to the laboratory frame using
the relativistic Lorentz transformations. The analysis indicates that the
spectral line of radiation is generally determined by the spreading length
of the electron wave, the relaxation time, and the interaction time.
The compatibility and correspondence of our analysis with the classical
analyses are given. In Section 5, the conclusion is provided.

2. The dynamic of the laser field in the moving frame

The configuration of the electron beam and undulator magnets in
an FEL is shown in Fig. 1. For a one-dimensional undulator field, the
undulator axis is aligned with the 𝑧-axis, and the magnetic field is
aligned vertically along the 𝑦-axis. The magnets have alternating poles
and the direction of the magnetic field is reversed every undulator
period 𝜆𝑈 .

The generation of coherent FEL radiation in the optical and x-ray
regimes is achieved by using high-energy electron beams (i.e., the
Lorentz factor 𝛾 ≫ 1). The relativistic dynamics is then necessary
to carry out the calculations in the laboratory frame. In the current
analysis, we apply the Lorentz transformations to a moving frame in
which a simplified unrelativistic treatment is used [16]. From here on,
we will use an arbitrary moving frame with a fixed velocity V which is
slightly less than the speed of light 𝑐. Once we get the expression for the
radiated power in the moving frame, the results are then transformed
back to the laboratory frame using Lorentz transformations.

Looking at the interaction in a frame moving with a velocity V, the
laser wavelength in the moving frame �́� relates to that in the laboratory
frame 𝜆 by

�́� = 𝜆

[

1 + (V∕𝑐)
]

√

1 − (V∕𝑐)2
. (1)

Therefore, the laser frequency in the moving frame �́� is transformed by

�́� = 𝜔

[

1 − (V∕𝑐)
]

√

1 − (V∕𝑐)2
= 𝛽𝑐. (2)

The evolution of the transverse electric field of the laser �́�𝑥𝐿 is
described by the wave equation

∇2�́�𝑥𝐿 − 𝜇0𝜀0
𝜕2�́�𝑥𝐿

𝜕𝑡2
= 𝜇0

𝜕𝐽𝑥
𝜕𝑡

, (3)

where 𝐽𝑥 is the 𝑥-component of the current density. In the low-gain
regime of FELs, the collective effects of space charge do not play an
important role where the beam current is significantly small. Thus, the
space charge density is neglect in Eq. (3).

The laser field is assumed to be a polarized plane wave in the
𝑥-direction. Therefore, the electric field is assumed to take the form

�́�𝑥𝐿 = �́� (𝑡, �́�)𝑇𝑥(𝑥, 𝑦)𝑒𝑗(�́�𝑡−𝛽�́�) + 𝑐.𝑐., (4)

�́� (𝑡, �́�) is the field amplitude and 𝑇𝑥(𝑥, 𝑦) is the transverse field distribu-
tion. 𝑇𝑥(𝑥, 𝑦) satisfies the relation of
(

∇2 + 𝜇0𝜀0�́�
2) 𝑇𝑥(𝑥, 𝑦)𝑒−𝑗𝛽�́� = 0, (5)

and is normalized assuming

∫

∞

−∞ ∫

∞

−∞
|

|

𝑇𝑥(𝑥, 𝑦)||
2𝑑𝑥𝑑𝑦 = 1. (6)

The transverse field distribution 𝑇𝑥 is almost constant in the electron
beam and is taken into account to evaluate the coupling efficiency
between the electron beam and the laser field.
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