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a b s t r a c t

High intensity of particle beams is crucial for high-performance operation of modern electron–positron storage
rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with
self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new
accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using
computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based
techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is
presented for 15 electron–positron storage rings. The measured data and the predictions based on the computed
impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed:
interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of
computation mesh size, and effect of insufficient bandwidth of the computed impedance.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High intensity of particle beams is crucial for effective and high-
performance operations of modern electron–positron storage rings, both
colliders and light sources. One of the significant limiting factors of
beam intensity is the beam’s interaction with electromagnetic fields
induced in a vacuum chamber by the beam itself (collective effects of
beam dynamics). This interaction can result in serious troubles affecting
accelerator operations, such as overheating of vacuum chamber compo-
nents or instability of beam motion, leading to deterioration of the beam
quality or limitation of the beam intensity. The interaction of a particle
beam with its surroundings is described using the concept of impedance.
Basically, the interaction intensity is proportional to the product of the
impedance and the beam current.

For a new accelerator project, computation of the impedance budget
is an essential part of the accelerator design. The impedance must be
minimized to achieve the design beam intensity and quality. Beam-
based measurement of the impedance is an important part of machine
commissioning. Comparisons of impedance computations and beam-
based measurements show significant discrepancies for many machines,
a factor of two or even more is not something unusual. There are many
publications describing thorough calculations of impedance budgets,
where finally the total impedance is multiplied by a ‘‘safety factor’’ of
two. However, there are operating machines, which have not achieved
their design beam currents because the collective effects nave not been
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predicted correctly at the design stage. Thus, the accuracy of impedance
computation seems to be not adequate for engineering design of modern
accelerator facilities, which are extremely complex and expensive. For
such rough estimates, there is no need for comprehensive computer
simulations, approximate formulae are sufficient. Since the accuracy
of impedance budget computations is not sufficient, understanding the
reasons for this discrepancy is important if we want to improve the
impedance computations and predict stability conditions for a high-
intensity particle beam in future accelerators.

In this article, results of comparative analyses of impedance compu-
tations and beam-based measurements are presented. For 15 electron–
positron storage rings, the impedance budgets are taken from articles
published before commissioning. For the same machines, the broad-
band impedances were estimated from beam parameters measured
experimentally using beam-based techniques during commissioning and
operations. Possible reasons for the observed discrepancy between the
computed and measured impedances are discussed: (1) interference of
the wake fields excited by a beam in adjacent components of the vacuum
chamber; (2) effect of computation mesh size; (3) effect of insufficient
bandwidth of the computed impedance.

2. Wake fields and impedances

Fundamentals of the theory of collective effects and impedances are
described, for instance, in [1,2]. The concept of the wake function is
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used to describe the interaction of relativistic charged particles with the
wake fields. The wake function is a time-domain response of a vacuum
chamber to a point-charge excitation; in an ultra-relativistic case, it
is determined only by the geometry and electromagnetic properties
of the chamber, and it is independent of the beam parameters. The
wake function is defined as a normalized integral of the Lorentz force
that acts on a test particle moving behind a leading particle which
excites the wake fields. To analyze the beam stability in most practical
cases, it is enough to consider only the monopole longitudinal 𝑊∥ and
dipole transverse 𝐖⟂ wake functions. The longitudinal wake function
is obtained by integrating the electric field component 𝐸𝑧, which is
parallel to the velocity 𝐯 (|𝐯| = 𝑐) of the particles moving on the same
trajectory [2]:

𝑊∥(𝜏) = − 1
𝑞 ∫

∞

−∞
𝐸𝑧(𝑡, 𝜏) d𝑡 , (1)

where 𝑞 is the charge of the leading particle, 𝜏 = 𝑠∕𝑐, 𝑠 is the distance
between the leading and trailing particles, 𝑐 is the speed of light.
The dipole transverse wake function is determined similarly to the
longitudinal one as an integral of transverse electromagnetic forces
normalized by the dipole moment 𝑞𝑟 of the leading particle (𝑟 is the
transverse offset); it is a vector with horizontal and vertical components:

𝐖⟂(𝜏) = − 1
𝑞 𝑟 ∫

∞

−∞
[𝐄(𝑡, 𝜏) + 𝐯 ×𝐁(𝑡, 𝜏)]⟂d𝑡 . (2)

The longitudinal and dipole transverse wake functions are related to
each other by the Panofsky–Venzel theorem [2,3].

For a beam with arbitrary charge distribution, its interaction with
wake fields is described by the wake potential 𝑉 , which is a convolution
of the wake function 𝑊 and the longitudinal charge density 𝜆(𝑡):

𝑉 (𝜏) = ∫

∞

0
𝑊 (𝑡)𝜆(𝜏 − 𝑡)d𝑡 , (3)

where 𝜆(𝑡) is normalized as ∫ ∞
−∞ 𝜆(𝑡)d𝑡 = 1 .

In the frequency domain, each part of the vacuum chamber is rep-
resented by a frequency-dependent coupling impedance. Longitudinal
𝑍∥ and transverse 𝑍⟂ impedances are defined as Fourier transforms
of the corresponding wake functions. The major contributors to the
total impedance are: finite conductivity of the walls (resistive-wall
impedance), steps and tapered transitions, high-order modes of accel-
erating RF cavities, electrostatic pickup-electrodes, strip-lines, flanges,
bellows, synchrotron radiation ports, and other non-uniform sections of
the vacuum chamber.

There is an approximate relation between the longitudinal 𝑍∥(𝜔) and
dipole transverse 𝑍⟂(𝜔) impedances (conclusion of the Panofsky–Venzel
theorem):

𝑍⟂(𝜔) ≈
2𝑐
𝑏2𝜔

𝑍∥(𝜔) , (4)

where 𝑏 is the vacuum chamber aperture. This equation is exact for a
round pipe with resistive walls, 𝑏 is the pipe radius.

3. Impedance computation and beam-based measurement

There are several approximate analytical formulae used to calculate
impedances of sections with simple geometry, such as pillbox cavities
or step transitions. A useful collection of the formulae is published
in [4]. To compute the impedance of vacuum chamber components with
complex geometry, 3D simulation codes are used, e.g. GdfidL [5] or CST
Particle Studio [6]. These codes solve Maxwell equations with boundary
conditions determined by the chamber geometry. The fields are excited
by a model bunched beam with pre-defined charge distribution. The
simulation code output is the wake potential (3) which is a convolution
of the wake function and the longitudinal bunch profile. Taking into
account that a convolution of two time-domain functions is equivalent
to a product of their Fourier transforms, the impedance is calculated as

𝑍(𝜔) =
𝑉 (𝜔)
�̃�(𝜔)

, (5)

where 𝑉 and �̃� are the Fourier transforms of the wake potential and
the longitudinal charge density, respectively. So the bandwidth of
the impedance derived from the simulated wake potential is limited
by the bunch spectrum width, which is inversely proportional to the
bunch length defined for the simulation. The mesh size of the solver is
essential, it should be small enough to get reliable results for a given
bunch spectrum. For a typical bunch length of few millimeters, full 3D
simulation of wake fields in a big and complex structure is quite difficult
because huge memory and processor time are required.

For beam stability analysis, the total impedance of a vacuum cham-
ber can be approximated by a finite number of equivalent resonators
with proper frequencies, shunt resistances and quality factors. Since
narrow-band oscillation modes are more long-living than broadband
modes, we can assert that the narrow-band impedance causes the bunch-
by-bunch interaction and can result in multi-bunch instabilities, whereas
the broadband impedance causes the intra-bunch particle interaction
and can cause single-bunch instabilities. The beam–impedance interac-
tion manifests itself in several effects of beam dynamics, some of these
effects can be measured quite precisely using modern beam diagnostic
instruments and measurement techniques, and the measured data are
used for the impedance estimation.

3.1. Longitudinal broadband impedance

For the longitudinal broadband impedance, the measurable single-
bunch effects are: current-dependent bunch lengthening, synchronous
phase shift, and energy spread growth due to the microwave instability.
These effects are dependent on integral parameters combining the
impedance and the bunch power spectrum: the effective impedance and
the loss factor. If the bunch length is much shorter than the ring average
radius, the normalized effective impedance (𝑍∥∕𝑛)eff is defined as
(𝑍∥

𝑛

)

eff
=

∫ ∞
−∞ 𝑍∥(𝜔)

𝜔0
𝜔 ℎ(𝜔)d𝜔

∫ ∞
−∞ ℎ(𝜔)d𝜔

, (6)

where 𝑍∥(𝜔) is the frequency-dependent longitudinal impedance, 𝑛 =
𝜔∕𝜔0 is the revolution harmonic number, 𝜔0 = 2𝜋𝑓0 is the revolution
frequency, ℎ(𝜔) = �̃�(𝜔)�̃�∗(𝜔) is the bunch power spectrum, �̃�(𝜔) is the
Fourier transform of the longitudinal charge density 𝜆(𝑡). For a Gaussian
bunch, ℎ(𝜔) = 𝑒−𝜔

2𝜎2𝑡 , where 𝜎𝑡 = 𝜎𝑧∕𝑐, 𝜎𝑧 is the bunch length. The
effective impedance (6) will be used in the next section to compare com-
putations and beam-based measurements of the longitudinal broadband
impedance.

The loss factor 𝑘∥ characterizes the coherent loss 𝛥𝐸 of the beam
energy caused by the beam–impedance interaction

𝛥𝐸 = 𝑘∥𝑞
2 , (7)

where 𝑞 is the bunch charge. The loss factor can be expressed in terms
of the wake potential 𝑉∥ or of the impedance 𝑍∥:

𝑘∥ = ∫

∞

−∞
𝑉∥(𝑡) 𝜆(𝑡)d𝑡 =

1
2𝜋 ∫

∞

−∞
𝑍∥(𝜔)ℎ(𝜔)d𝜔 . (8)

If the bunch is not very short, the measurable single-bunch effects
can be described with reasonable accuracy using a simple broadband
resonator model. For longer bunches, even the simplest inductive model
𝑍∥∕𝑛 = 𝑐𝑜𝑛𝑠𝑡 is acceptable.

Interaction of a bunched beam with the broadband impedance
deforms the longitudinal bunch profile 𝜆(𝑡), which is Gaussian for a
zero-intensity beam. The bunch profile can be measured directly using
a streak-camera or a dissector tube; the bunch length can be measured
indirectly by measuring the bunch spectrum width using a pickup
electrode. At small beam currents (below the microwave instability
threshold), the energy spread of a relativistic beam is independent of its
intensity, and 𝜆(𝑡) as a function of the average bunch current 𝐼𝑏 = 𝑞𝑓0
can be described by the Haissinski integral equation [7]:

𝜆(𝑡) = 𝐾𝜆0(𝑡) exp

(

𝐼𝑏
𝜔𝑠𝜎𝛿

𝐸
𝑒
∫

𝑡

−∞
d𝑡′′∫

∞

−∞
d𝑡′𝑊∥(𝑡′′ − 𝑡′)𝜆(𝑡′)

)

, (9)
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