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a b s t r a c t

The unfolding (or deconvolution) technique is used in the development of digital pulse processing systems applied
to particle detection. This technique is applied to digital signals obtained by digitization of analog signals that
represent the combined response of the particle detectors and the associated signal conditioning electronics. This
work describes a technique to determine if the signal is unfoldable. For unfoldable signals the characteristics of
the unfolding system (unfolder) are presented. Finally, examples of the method applied to real experimental
setup are discussed.

1. Introduction

In radiation spectroscopy, the development of Digital Pulse Process-
ing is usually focused on direct synthesis of pulse shapes using digitized
signals coming from particle detection used in radiation measurement
systems [1,2]. The ideal shaping for a given detector depends on the
shape of the Digital Pulse Processing (DDP) system input signal and the
associated noise characteristics [3]. Thus, specific techniques are used to
synthesize various shapes to maximize their Signal-to-Noise Ratio [4–6]
or to minimize the effect of ballistic deficit or to reduce the pulse pile-
up [1].

A subset of Digital Pulse Processing is the unfolding (or decon-
volution) technique that allows the transformation of the digitized
signal into a unit impulse in the discrete-time domain (see [7] and
the references therein). The unfolding technique can be applied to
linear pulse processing systems that are either time-invariant or time-
variant. A detection system that uses this technique usually includes
the unfolding of the digital signals into unit impulses, followed by
the synthesis of digital signal processing systems with unit impulse
responses equivalent to the desired pulse shape.

In this paper, we describe a technique to determine if a pulse shape
can be unfolded (unfoldability), and in such case, a method that allows
the synthesis of its unfolder, either exactly or as a close approximation.
The proposed method is suitable for real-time implementation.

2. Unfolding and unfoldability

In general, digital unfolding systems have a unit impulse response
ℎ[𝑛] whose convolution with the input signal 𝑥[𝑛] produces a unit
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impulse 𝛿[𝑛] as explained in [8]

𝑥[𝑛] ∗ ℎ[𝑛] = 𝛿[𝑛 − 𝑑], 𝑑 ∈ {0, 1, 2,…} (1)

where 𝑑 is the delay of the unit impulse in cycles.
Since Eq. (1) is a convolution, in the 𝑧-domain, it can be presented

as follows

𝑋(𝑧) ⋅𝐻(𝑧) = 𝑧−𝑑 (2)

Therefore, the shaper that unfolds the pulse is equal to

𝐻(𝑧) = 𝑧−𝑑

𝑋(𝑧)
(3)

On the other hand, when the 𝑧-transform is applied to 𝑥[𝑛], the
arrangement of its poles and their zeros are obtained. It is also known
that systems are stable when all its poles are inside the Region Of
Convergence (ROC) (i.e. 𝑧 < 1), oscillating when at least one of its poles
is at the circle 𝑧 = 1 and unstable when at least one of its poles is outside
the ROC (i.e. 𝑧 > 1).

When 𝑑 = 0, according to (3), 𝐻(𝑧) is the inverse of 𝑋(𝑧). It implies
that the zeros of 𝑋(𝑧) are the poles of 𝐻(𝑧) and vice versa. In addition,
𝐻(𝑧) must be stable. Therefore, for a signal 𝑋(𝑧) to be unfoldable, both
its zeros and poles must be within the ROC (i.e. 𝑧 < 1).

When 𝑑 > 0, 𝑋(𝑧) is delayed by 𝑑 cycles, so the result 𝑋(𝑧) ∗ 𝐻(𝑧)
must be a unit impulse delayed by 𝑑 cycles (i.e. 𝑧−𝑑𝛿(𝑧)). Adding a delay
of a certain number of cycles implies the inclusion of the same number of
poles in 𝐻(𝑧) at 𝑧 = 0. These poles have no effect on the stability of 𝐻(𝑧)
but their inclusion may be mandatory to convert a non-casual unfolder
obtained into a casual one by applying (3). As very simple example,
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Table 1
Unfolder characteristics. Non-causal unfolders are not implementable, but they can be
solved by adding 𝑑 grades in the denominator and thus shifting by 𝑑 cycles the unit impulse
as explained in text.

Unfolder characteristic Input signal characteristic Consequence in the unfolder

IIR Zeros at 𝑧 ≠ 0 Poles at 𝑧 ≠ 0
Oscillating, potentially unstable ∃ zeros at |𝑧| = 1 ∃ poles at |𝑧| = 1
Unstable ∃ zeros at |𝑧| > 1 ∃ poles at |𝑧| > 1
Non-causal Grad num < grad den 𝐻(𝑧): Grad num > grad den

if 𝑋(𝑧) = 1
𝑧−0.5 , its unfolder is 𝐻(𝑧) = 𝑧 − 0.5 which is non-casual. To

convert 𝐻(𝑧) into casual it must be delayed by one (or more) cycles,
that is 𝐻(𝑧) = 𝑧−0.5

𝑧 whose convolution with 𝑋(𝑧) gives a unit impulse
delayed one pulse.

Eq. (3) has solution only for signals whose poles and zeros are inside
the ROC (e.g. exponential and (RC)𝑛 pulses). In contrast, whenever
a shape is symmetric (e.g. trapezoidal, triangular or cusp-like), their
zeros are located at |𝑧| = 1. Consequently, its unfolder has their
poles located at |𝑧| = 1 and the unfolder is oscillating or potentially
unstable. Fortunately, pulses coming from a radiation detector are rarely
symmetric. In Table 1 the characteristics of the unfolder 𝐻(𝑧) as function
of the input signal 𝑋(𝑧) are listed.

It is known that convolution in time-domain is equal to multiplica-
tion in the 𝑧-domain. Thus, when two signals are convoluted in time-
domain it is equivalent to join all their zeros and poles. As mentioned
previously, the placement of their zeros indicate when signals are
unfoldable. Therefore, the result of the convolution of two unfoldable
signals is also unfoldable. In contrast, the result of the convolution of an
unfoldable signal and a non-unfoldable signal is non-unfoldable. By last,
the addition of non-unfoldable signals are also non-unfoldable. These
facts are always valid unless the two combined signals cancel out each
of their zeros reciprocally. In this case, a new analysis have to be carried
out.

3. Examples

3.1. Unfolding of exponential pulses

In the discrete-time domain, a generic exponential pulse can be
defined as

𝑥[𝑛] = 𝐴 ⋅ exp
(−𝑛

𝜏

)

(4)

where 𝜏 is the decay constant. In the 𝑧-domain, it becomes

𝑋(𝑧) = 𝑧
𝑧 − 𝑎

(5)

where

𝑎 = exp
(−𝛥𝑇

𝜏

)

(6)

and 𝛥𝑇 is the sample period of the digitized signal.
Applying the exposed method, we obtain the following unfolder with

no delay (i.e. 𝑑 = 0)

𝐻(𝑧) = 𝑧 − 𝑎
𝑧

(7)

The impulse response in time-domain and pole-zero maps of 𝑋(𝑧),
𝐻(𝑧) and 𝑌 (𝑧) are shown in Fig. 1. This result agrees with that shown
in [7] for exponential pulses.

3.2. Sum of exponential pulses

As stated in [7] and according to the explanation given in Section 2,
the unfolding of an exponential pulse can be extended to additions of
exponential pulses.

Using the linearity property of the 𝑧-transform, the sum of two
exponential pulses can be expressed in the 𝑧-domain as

𝑋(𝑧) = 𝑋𝑎(𝑧) +𝑋𝑏(𝑧) =
𝐴𝑧
𝑧 − 𝑎

+ 𝐵𝑧
𝑧 − 𝑏

(8)

where 𝐴,𝐵 are their amplitudes and 𝑎, 𝑏 are their delay constants.
Disregarding 𝐴 and 𝐵, which do not affect the stability of the system,
the equation can be rewritten in the following way

𝑋(𝑧) =
𝑧((𝑧 − 𝑎) + (𝑧 − 𝑏))

(𝑧 − 𝑎)(𝑧 − 𝑏)
(9)

Recall that for the system to be unfoldable, both poles and zeros must be
within the ROC region. Clearly, the poles of 𝑋(𝑧) are the poles of 𝑋𝑎(𝑧)
and the poles of 𝑋𝑏(𝑧). All the poles of 𝑋(𝑧) will be within the ROC if
those of 𝑋𝑎(𝑧) and 𝑋𝑏(𝑧) are too. With respect to the zeros, the system
has one at 𝑧 = 0 and another at 𝑧 = (𝑎+ 𝑏)∕2, so if 𝑎, 𝑏 < 1, the zeros will
also be within the ROC.

In general, (9) can be extended to an arbitrary number of exponen-
tials and it is trivial to demonstrate that 𝑋(𝑛) is unfoldable whenever
their decay constants are below 1. Therefore, we can conclude that the
sum of exponential pulses are unfoldable.

In the case where one of the pulses is delayed with respect to the
others, this affirmation cannot be always true since new poles are added
and they can make the system unstable or oscillating. In Fig. 2 an
oscillating unfolder shaper is shown. The input signal is the sum of two
exponential signals with 𝑎 = 𝑏 = 0.8, one of them is delayed by one
cycle.

3.3. Convolution of exponential pulses and (RC)𝑛 pulses

As exposed in Section 2, the convolution of exponential pulses in
time-domain is equivalent to multiplication in 𝑧-domain. Thus, the effect
of convolving signals is to add new poles and zeros without displacing
the original ones. Therefore, because exponential pulses are unfoldable,
the convolution of exponential pulses are unfoldable.

An arbitrary convolution of exponential pulses gives rise to (RC)𝑛
pulses. This pulse can be represented in the 𝑧-domain as

𝑋(𝑧) = 𝑧2

(𝑧 − 𝑎)2
(10)

Applying the exposed method, we obtain the following unfolder with
no delay (i.e. 𝑑 = 0):

𝐻(𝑧) =
(𝑧 − 𝑎)2

𝑧2
(11)

The impulse response in time-domain and pole-zero maps of 𝑋(𝑧),
𝐻(𝑧) and 𝑌 (𝑧) are shown in Fig. 3. This result also agrees with that
shown in [7] for exponential pulses.

3.4. Derivatives and integrals of unfoldable signals

It is known that given an input signal 𝑋(𝑧), its n-derivative is
(

𝑧−1
𝑧

)𝑛
𝑋(𝑧) whereas its n-integral is

(

𝑧
𝑧−1

)𝑛
𝑋(𝑧). In both cases 𝑋(𝑛) is

multiplied by
(

𝑧−1
𝑧

)𝑛
(𝑛 in case of the n-derivative and −𝑛 in case of the

n-integral).
Thus, given a stable signal 𝑋(𝑧),

(

𝑧−1
𝑧

)𝑛
𝑋(𝑧), 𝑛 ∈ Z will be also

stable if either poles and zeros of
(

𝑧−1
𝑧

)𝑛
are within the ROC. In case of

integrals (𝑛 ≤ −1), the poles are located in 𝑧 = 1 being able to make the
system oscillating or unstable depending on 𝑋(𝑧). However, due to the
fact that

(

𝑧−1
𝑧

)𝑛
itself is unfoldable (see Section 2), we can conclude if

a signal is unfoldable, its n-derivative or n-integral is also unfoldable.
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