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a b s t r a c t

With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient
transport of ion species from the ion source area to the experimental setup becomes essential. Some available,
powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through
the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are
documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking
calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical
element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer
matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A
transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from
the standard first order transfer matrix based ion optical simulation program implementing the derived transfer
matrix is compared with the real field beam tracking simulations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Precision spectroscopy experiments on atomic, molecular and cluster
ions have become active research areas among others in fundamen-
tal physics, medical science, and astrophysics. These measurements
often take advantage of the excellent experimental conditions offered
by storage rings [1–5] and traps [6–10]. Especially the large-scale
storage ring devices are usually separated from the ion source area
for beam production and preparation. Hence, the ions have to be
transferred efficiently to the experimental setup. A typical beamline
system consists of electrostatic and magnetostatic ion optical elements.
The beamline design requires detailed ion trajectory simulations and
beam property calculations for an efficient ion transport. Therefore the
field characteristics of the ion optical elements have to be optimized.
Ion trajectory computations are performed either using real fields or
employing transfer matrices of the ion optical elements. The latter are
derived by solving the equation of motion for a charged particle passing
through the element. They are first order calculations based on sharp
cuts of the fields at the boundary of the device. Furthermore, the transfer
matrix can only be derived if the central particle follows a straight or a
circular path inside the element.

However, there are ion optical elements such as an electrostatic
quadrupole deflector or an electrostatic energy analyzer made of parallel
plates, where the central orbit of the charged particle moving inside
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the element is neither a straight line nor a circle. In this case the
transfer matrix cannot be derived analytically. So far such ion optical
elements cannot be used in simulation programs such as MAD8 [11] and
MIRKO [12], which are based on transfer matrices.

The advantage of a quadrupole deflector compared to cylindrical
or spherical deflectors is that the beam can be optionally directed
90 degree to the left, to the right, or even guided straightforward.
Such quadrupole deflectors are implemented, e.g., in the SAPHIRA
storage ring [13]. Furthermore, the two-dimensional quadrupole field
has properties not only as an ion beam deflector, but also as energy
analyzer and beam merger [14]. Therefore, the transfer matrix is essen-
tial to use the quadrupole deflector in first order ion optics simulation
programs. To our knowledge only the work of Zeman [14], deriving the
transfer matrix of an ideal hyperbolic electrostatic quadrupole deflector
neglecting any fringe field effects at the entrance and the exit of the
device, is available in this field of research. This is not sufficient for real
beam simulations, where fringe fields exist and crucially affect the ion
motion. In extended beamline systems these errors add up becoming
unacceptably large. Here, the real field simulations are advantageous.
But the computing power is increasing with the number of involved ion
optical elements and real field simulations become impractical for larger
beamline systems. Instead, employing transfer matrices for beamline
simulations is a promising approach.
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In this article we describe a method calculating the transfer matrices
of complex ion optical elements for which analytical calculations are
not possible. As an example we will discuss an electrostatic quadrupole
deflector. Such a deflector is foreseen to be used in the low energy
beamline of the cryogenic storage ring (CSR) [15] ion injector presently
under construction at the Max-Planck-Institut für Kernphysik in Hei-
delberg. Unlike previous studies, the real field simulations of a single
ion optical element are employed in order to derive its transfer matrix.
Therefore the Twiss parameters [16] describing the phase space ellipse
of the ion beam under test are calculated at the entrance and the exit
of the ion optical element by tracking ions through the real field. The
matrix elements are extracted from fits to the relations between the
initial and the final Twiss parameters. Important to note is that the
higher order terms and the coupling between the horizontal and vertical
motions are still neglected in the first order approach considered here.
Hence, the results are valid for ion optical elements whose apertures are
significantly larger than the beam diameter.

The article is structured as follows: In Section 2 the procedure to
derive the matrix elements from tracking calculations is described. The
transfer matrix calculation of an electrostatic cylindrical deflector, an
electrostatic spherical deflector, and a magnetic quadrupole lens are
discussed as case studies in Section 3. These case-study elements are
well understood and the derived transfer matrices can be compared to
analytical solutions. Furthermore, employing the present method, the
theoretically derived matrix elements of an ideal hyperbolic electrostatic
quadrupole deflector excluding the fringe field by Zeman [14] is also
reproduced. Finally, in Section 4, an electrostatic quadrupole deflector
geometry consisting of circular electrodes including fringe fields at
the entrance and the exit of the deflector field is discussed for a real
situation. The derived matrix elements are compared to the phase
space ellipse obtained from beam tracking simulations using real fields
demonstrating the applicability of the method to arbitrary ion optical
elements. Henceforth, in order to show the use of such matrix calculation
in a first order ion optical simulation program like MAD8 [11], a transfer
line with quadrupole deflector and quadrupole doublet is simulated
in MAD8 using the derived matrix of the quadrupole deflector. These
results are compared with the beam tracking simulations using real field.

2. Determination of the transfer matrix

A charged particle at any position 𝑠 with respect to the central orbit
inside an electrostatic or magnetostatic beamline system is described
by the vector 𝑋(𝑠) = [𝑥, 𝑥′, 𝑦, 𝑦′, 𝑙, 𝛥𝑝∕𝑝]. 𝑥, 𝑦 denote the horizontal and
vertical displacements while 𝑥′, 𝑦′ are the corresponding angles of the
ion trajectory with respect to the central orbit [16]. 𝑙 is the deviation
in longitudinal displacement of the particle with respect to the central
particle (which moves along the central orbit). 𝛥𝑝∕𝑝 is the relative
momentum deviation of an ion compared to the central particle with
momentum 𝑝.

The ion transit through each ion optical element from the initial
(𝑠 = 0) to the final position 𝑠 can be described by [16,17]:

𝑋(𝑠) = 𝑅(𝑠)𝑋(0). (1)

If the horizontal and vertical motions are decoupled and any temporal
evolution is neglected, then the transfer matrix 𝑅(𝑠) is given by:
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with

𝑀ℎ𝑜𝑟 =
(

𝑀11 𝑀12
𝑀21 𝑀22

)

(3)

and

𝑀𝑣𝑒𝑟 =
(

𝑀33 𝑀34
𝑀43 𝑀44

)

. (4)

Eqs. (3) and (4) give the horizontal and vertical transfer matrices.
𝑀15 and 𝑀25 in Eq. (2) describe the dispersive elements in horizontal
direction, while 𝑀35 and 𝑀45 are zero considering no dispersion in
vertical direction. For the constant 𝛥𝑝∕𝑝, all matrix elements in the fifth
row of Eq. (2) are zero except 𝑀55, which is equal to 1 [16].

In first order, a beam of charged particles can be described by a
two-dimensional phase space ellipse in horizontal and vertical direction,
given by the coordinates 𝑥, 𝑦 and the slopes 𝑥′, 𝑦′ of each trajectory with
respect to the central orbit. The root mean square (RMS) emittance
(𝜀𝑅𝑀𝑆 ) of the ion beam is thus a measure of the average spread
of transverse particle coordinates and is defined [18] in horizontal
direction by:

𝜀𝑥,𝑅𝑀𝑆 =
√

⟨𝑥2⟩⟨𝑥′2⟩ − ⟨𝑥𝑥′⟩2, (5)

where ⟨𝑥2⟩, ⟨𝑥′2⟩ and ⟨𝑥𝑥′⟩ represent the averages of 𝑥2, 𝑥′2, and 𝑥𝑥′,
respectively, over all particles in the beam. Respectively, the vertical
RMS emittance is defined.

The beam emittance is related to the three Twiss or Courant–Snyder
parameters 𝛼, 𝛽, and 𝛾 [17,19] by:

𝜀𝑥,𝑅𝑀𝑆 = 𝛾𝑥𝑥
2 + 2𝛼𝑥𝑥𝑥′ + 𝛽𝑥𝑥

′2. (6)

The Twiss parameters 𝛼𝑥 and 𝛽𝑥 can be determined by:

𝛼𝑥 = −
⟨𝑥𝑥′⟩
𝜀𝑥,𝑅𝑀𝑆

(7)

and

𝛽𝑥 =
⟨𝑥2⟩

𝜀𝑥,𝑅𝑀𝑆
. (8)

𝛽𝑥 is related to the beam width and 𝛼𝑥 describes the orientation of the
phase space ellipse. A beam can be converging (𝛼𝑥 > 0), diverging
(𝛼𝑥 < 0), or being at waist (𝛼𝑥 = 0).
𝛾𝑥 is determined using 𝛼𝑥 and 𝛽𝑥:

𝛾𝑥 =
1 + 𝛼2𝑥
𝛽𝑥

=
⟨𝑥′2⟩

𝜀𝑥,𝑅𝑀𝑆
. (9)

It characterizes the divergence of the ion beam.

2.1. Twiss parameters determination

Beam tracking calculations through the real field are used to de-
termine the phase space coordinates (𝑥, 𝑥′) of each ion in front and
after the ion optical element. For this, various initial beam sizes (𝛽𝑖)
with zero momentum deviation are considered under the condition that
the emittance is conserved. The momentum deviation has to be zero
enabling the transfer matrix elements calculations of 𝑀ℎ𝑜𝑟 and 𝑀𝑣𝑒𝑟.
The Twiss parameters at the exit (𝛼𝑓 , 𝛽𝑓 ) of the element as well as
the final RMS emittance are obtained using Eqs. (5)–(8). Furthermore,
they are determined along the beam trajectory at positions outside
the ion optical element, where the fringe fields of the element can
be neglected. The relation between the initial (𝛼𝑖, 𝛽𝑖) and final (𝛼𝑓 , 𝛽𝑓 )
Twiss parameters allows reconstructing the matrix elements of 𝑀ℎ𝑜𝑟 and
𝑀𝑣𝑒𝑟 (see Section 2.2).

2.2. Determination of the matrix elements of 𝑀ℎ𝑜𝑟 and 𝑀𝑣𝑒𝑟

The transformation of Twiss parameters (𝛼, 𝛽 and 𝛾) from initial
(𝑠 = 0) to final position 𝑠 can be described by [17]:
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