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a b s t r a c t

The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in
addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam
lifetime are also desirable. The convergence and computation times are of great concern for the optimization
algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over
a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential
evolution is presented. The optimization results are compared with two most widely used optimization techniques
in accelerators—genetic algorithm and particle swarm optimization. It is found that the differential evolution
produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam
emittance and dispersion function in the straight section. The differential evolution was used, extensively, for
the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the
magnet power supply capabilities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The lattice optimization for the low emittance synchrotron light
sources is an involved task, which belongs to a class of multi-objective
optimization problem. One needs to optimize various objectives si-
multaneously [1]. For a synchrotron light source, its brightness is the
main figure of merit. It is inversely proportional to the product of
horizontal and vertical beam emittances. The beam emittance [2] is a
complicated function of the lattice properties driven by the distribution
of dipole and quadrupole magnets and their strengths. Minimizing
the beam emittance is not the only objective of the lattice design,
instead one also needs to optimize for the operational feasibility, for
accommodating larger number of insertion devices, for achieving good
injection efficiency and sufficient beam lifetime etc. The sextupole
magnets with high strengths are the integrated elements of the low
emittance lattices to correct for high natural chromaticities, which may
lead to shrinking of dynamic aperture (DA). Keeping in view that all
types of magnets are to be used, low emittance and large DA are the
ultimate optimization goals. In some machines, there is a requirement
of getting special distribution of lattice functions, for example, low beta
is required for minimizing the effects of insertion devices in operation
and high horizontal beta is required for the conventional injection in
storage rings. The smaller momentum compaction factor is desirable
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for producing the shorter bunches. The optimization of the distribution
of the lattice functions and still minimizing the beam emittance and
increasing DA are some of the conflicting requirements.

Earlier, various traditional approaches were applied for optimizing
the lattice parameters of the storage rings. In these approaches, one
needs to first find a stable solution, often by trial and error, that roughly
meets the desired properties, and then goal is to locally improve around
it. A technique called GLASS (GLobal scan of All Stable Settings) [3]
was proposed in which the properties of the lattices are systematically
calculated for all stable solutions. However, because the computing
time is exponentially large, depending on the numbers of variables and
step sizes, GLASS currently is unfeasible for problems with more than
4–5 variables [4]. Usually, the variables that govern such problems
are related to one another in a very complicated way, and finding
the best combination of them can be a challenging task. Normally,
the relations between these decision variables can be translated into
objective functions, and their values can be interpreted as a measure
of the quality offered by that particular combination of the decision
variables to a particular aspect of the solution. The n-dimensional
optimization problems with m individual objectives can be stated as [5]:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∕𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∶ 𝐹 (𝒙) =
[

𝑓1 (𝒙) , 𝑓2 (𝒙) , 𝑓3 (𝒙) ,… , 𝑓𝑚 (𝒙)
]

; (1)

https://doi.org/10.1016/j.nima.2017.11.077
Received 7 April 2017; Received in revised form 13 November 2017; Accepted 22 November 2017
Available online 6 December 2017
0168-9002/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.nima.2017.11.077
http://www.elsevier.com/locate/nima
http://www.elsevier.com/locate/nima
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2017.11.077&domain=pdf
mailto:riyasat@rrcat.gov.in
https://doi.org/10.1016/j.nima.2017.11.077


R. Husain, A.D. Ghodke Nuclear Inst. and Methods in Physics Research, A 883 (2018) 151–158

𝑥(𝐿)𝑖 ≤ 𝑥𝑖 ≤ 𝑥(𝑈 )
𝑖 , 𝑖 = 1, 2, 3,… , 𝑛

where, x is a vector of n dimensional decision variables x =
(𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑛). Here, 𝑥(𝐿)𝑖 and 𝑥(𝑈 )

𝑖 are the lower and upper bounds
of the decision variables 𝑥𝑖. The functions 𝑓1(x) through 𝑓𝑚(x) indicate
the individual objective functions. In almost all practical cases, finding
good solutions is not a problem, but finding the best solution is much
more involved. Moreover, for most problems encountered in practice,
the objective functions 𝑓1 (x) through 𝑓𝑚 (x) are highly nonlinear, non-
differentiable, or have no way of determining initial estimates close to
the global optimum. The practical approach to tackle such problems
is to use the meta-heuristic optimizers, which use a population of
trial solutions, and apply certain probabilistic rules to generate a new
population, which converge to the global minimum of the objective
functions with high probability. Over the years, many such algorithms
have been developed, of which the Genetic Algorithm (GA) [1,5–10],
Particle Swarm Optimization (PSO) [11–13] are most widely used in
optimization of accelerator parameters.

GA is a class of evolutionary algorithms of which Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [5] is more popular, which is
based on natural evolution of crossover, mutation and selection. The
PSO is a class of swarm intelligence algorithm. PSO follows the self-
organizing behaviour of social animal living in a group. It has been
recently used to optimize the Linac operation and nonlinear dynamics
of storage rings [11–13].

It has been demonstrated that both the algorithms—GA and PSO
are powerful and effective in solving the problems for highly nonlinear
objectives, which have a large number of local optima. Comparative
studies of these two techniques have been performed in Ref. [13] for
optimizing the momentum and dynamic apertures of SPEAR3 storage
ring. Two cases of initial population generation were considered: (i)
purely random distribution within lower and upper bound, and (ii)
initial population seeded with the nominal good solution and a small
random distribution around it. It was reported that PSO converges
faster than GA, and is not dependent on the distribution of initial
population, while GA depends on initial population distribution con-
siderably. In order to check this further, a performance comparison of
these two algorithms by applying them to a problem with two objective
functions—beam emittance and dispersion function at the centre of
straight section are performed for the case of Indus-2. It was found that if
initial population are randomly generated, then PSO and GA give almost
equivalent results, however a diversity in the variable space is adequate
in case of PSO.

Some authors have applied another class of evolutionary algorithm,
called Differential Evolution (DE) [14], which is based on the global-
ized pseudo-derivatives. DE is a very powerful and simple population
based algorithm like genetic algorithms using the similar operations—
crossover, mutation and selection. The main difference in constructing
the better solutions is that the genetic algorithms rely on crossover,
while DE relies on mutation operation. This main operation is based
on the differences of randomly sampled pairs of solutions in the popu-
lation. The algorithm uses mutation operation as a search mechanism
and selection operation to direct the search towards the prospective
regions in the search space. The DE algorithm also uses a non-uniform
crossover that can take the child vector parameters from one parent
more frequently than it does from others. DE is an additional recipe for
the optimization algorithms and has received significant interest, in the
field of optimization of the complicated accelerator parameters [15–17].
A brief introduction to DE algorithm is described below.

The DE algorithm uses the mutation operation based on scaled
differences of the parent solutions to generate the next generation
candidates or trial parameter vectors for optimization. Originally, Storn
and Price proposed five different mutation processes or strategies in
Ref. [14]. For the present study, we have selected a ‘rand-to-best’
strategy [16,17], which gives a balance between fast convergence and

robustness of the algorithm. In this strategy, a trial parameter vector 𝑣𝑖
at generation j is generated according to

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝐹1
(

𝑥𝑏,𝑗 − 𝑥𝑖,𝑗
)

+ 𝐹2(𝑥𝑟1 ,𝑗 − 𝑥𝑟2 ,𝑗 ) (2)

where, 𝑟1 and 𝑟2 are integer indices chosen randomly from the interval
[1, NP] and are different from the running index i, 𝑥𝑏,𝑗 is the best solution
vector among NP population members at the generation j. 𝐹1 is a weight
factor for the combination between best and current parent vector, and
𝐹2 is a scaling factor, which controls the amplification of the differential
vectors and is known as mutation-weighting factor. Too large values of
𝐹1 and 𝐹2 provide the diversity in the solution space and too small values
results in fast convergence. Normally there values are in the range 0–2.

To further increase the diversity in solution space, a crossover
operation between the target vector 𝑥𝑖,𝑗 and mutant vector generate 𝑣𝑖,𝑗
at generation j, is performed. This operation combines the two vectors
into a new trial vector 𝑢𝑖,𝑗 as per the following rule:

𝑢𝑖,𝑗 =
{

𝑥𝑖,𝑗 , 𝑖𝑓 𝑟𝑎𝑛𝑑 (𝑗) ≥ 𝐶𝑅
𝑣𝑖,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where rand() is a uniform random number between 0 and 1, and CR is
the crossover probability. CR, 𝐹1 and 𝐹2 are three important controlling
parameters of the algorithm. The newly generated trial solution 𝑢𝑖,𝑗 is
checked against the parent solution 𝑥𝑖,𝑗 through the selection operations
like in NSGA-II.

Very recently, various DE mutation strategies have been used to
optimize the photoinjector beam dynamics [15,16], and DA of the future
collider [17]. In these studies, the value of CR is fixed at 0.8, 𝐹 = 𝐹1 = 𝐹2
and takes the random value between 0 and 1 at every generation. The
advantage of these optimization methods is that they allow to find
globally optimal solutions, when a large numbers of fit parameters are
used, while showing the trade-offs in objective functions within the
acceptable computing time.

In this paper, all three multi-objective optimization algorithms-GA,
PSO and DE are used to compare their performance for the case of
linear lattice optimization of Indus-2 storage ring. The Indus-2 lattice
is described in Section 2. In Section 3, a study for the optimization
of beam emittance and the dispersion function in the straight section
is presented. This uses strengths of all five quadrupole families as the
variables. The results obtained by GLASS scan are also presented. The
outcome of the study is that DE produces best Pareto optimal front
compared to other algorithms in almost equal computation time. The
optimization to achieve low momentum compaction factor together
with lower beam emittance are discussed in Section 4. In Section 5,
we extend the study to explore the alternate low and high beta lattices
for commissioning of insertion devices (IDs) and satisfying the off axis
injection. In this mode, DE was used for simultaneous optimization of
the beam emittance and DA, including two sextupole family strengths
as additional two variables. Lastly, in Section 6, summary and future
possibilities of applying the DE for upgrade of Indus-2 lattice are
presented.

2. Indus-2 lattice

Indus-2 [18,19] is a 3rd generation synchrotron light source located
at Raja Ramanna Centre for Advanced Technology (RRCAT) Indore,
India, which is optimized for the generation of photons at a critical
wavelength of 2 Å. The ring is ∼172.5 m in circumference and consists
of eight super-periods. The lattice structure of one super-period is a
double bend achromat of the expanded Chasmann Green type. The
lattice functions together with arrangement of magnetic elements in a
super-period are shown in Fig. 1. At present, Indus-2 is being operated
at relaxed optics with beam emittance of 135 [nm rad] at 2.5 GeV. Basic
operational parameters of Indus-2 are given in Table 1. The Indus-2 is
running in the round the clock mode for beamline experiments and all
hardware are fixed all along the circumference of the ring. For tuning
the machine performance by shaping the lattice parameters for various
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