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a b s t r a c t

We study the effect of a finite sample size, beam divergence and detector thickness on the resolution function of a
MIEZE spectrometer. We provide a transparent analytical framework which can be used to determine the optimal
trade-off between incoming flux and time-resolution for a given experimental configuration. The key result of
our approach is that the usual limiting factor of MIEZE spectroscopy, namely neutron path length differences
throughout the instrument, can be suppressed up to relatively large momentum transfers by using a proper
small-angle (SANS) geometry. Under such configuration, the hitherto accepted limits of MIEZE spectroscopy in
terms of time-resolution are pushed upwards by typically an order of magnitude, giving access to most of the
topical fields in soft- and hard-condensed matter physics.

© 2017 Elsevier B.V. All rights reserved.

A majority of scientific advances are driven by technical develop-
ment and the topics covered by neutron spectroscopy do not escape this
paradigm. Constant efforts aiming at an improvement of momentum
(space) or energy (time) resolution are crucial for addressing modern
issues in soft- and hard-condensed matter physics. To date, the tech-
nique offering the finest energy resolution is Neutron Spin Echo (NSE)
spectroscopy which allows studying slow processes (i.e. with charac-
teristic times approaching the μs range), provided that the carefully
manipulated beam polarization is not degraded by the sample or its
environment [1]. Here we consider a derivative of NSE, the so-called
MIEZE technique, where all spin manipulations are performed upstream
of the sample position. At equivalent technical resolution, MIEZE is po-
tentially more versatile than NSE since it works with any kind of samples
(e.g. hydrogen-containing systems [2], multi-domain ferromagnets [3],
etc.) and under extreme conditions (e.g. large magnetic fields [4]).
On the downside, being a time-of-flight technique, the efficiency of
the method is limited towards high resolution by deviations from the
optimal neutron flight path across the setup. Here, we show that these
limitations can be drastically softened by using MIEZE in a small-angle
(SANS) configuration. Our findings clearly pledge for the construction of
a dedicated MIEZE-SANS instrument. Its performances can be quantified
using the analytical framework developed in this paper.

1. Principles and limits of MIEZE spectroscopy

In the late eighties, R. Golub and R. Gähler have proposed an alter-
native design to solenoid-based NSE spectrometers, relying on the use of
compact radio-frequency spin flippers (RFSF) and hence termed Neutron
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Resonance Spin Echo (NRSE) [6]. NRSE is now available at different
instruments throughout the world (MUSES [7] at LLB-Saclay and IN22-
ZETA [8] at ILL-Grenoble in France, RESEDA [9] and TRISP [10] at MLZ-
Garching, V2-FLEXX [11] at BER II-Berlin in Germany, VIN ROSE [12] at
J-PARC/MLF in Japan) and has opened new experimental perspectives
by pushing the usual resolution limits of inelastic scattering [13–15] and
diffraction [16,17]. As noticed in the early stages of the development of
NRSE, series of resonant neutron spin flips can used as building blocks
for alternative spectroscopic methods, in analogy with pulse sequences
employed in nuclear magnetic resonance (NMR). MIEZE is an elegant
application of this idea [18]. A sketch of a typical MIEZE setup is shown
in Fig. 1. It consists in a pair of RFSFs separated by a distance 𝐿1 and
operated at angular frequencies 𝜔1 and 𝜔2 ≠ 𝜔1, respectively. At a
distance 𝐿2 downstream of the second RFSF, where we choose to place
a time-resolved detector, the spin phase of a neutron reads [19]
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where 𝜔M = 2(𝜔2−𝜔1) is the modulation (or MIEZE) angular frequency,
𝑡D the absolute detection time, 𝑣 the neutron velocity, 𝐿2S the distance
between the second flipper and the sample and 𝐿SD the sample-to-
detector distance. The velocity-dependent part of Eq. (1) is canceled
by fulfilling the focusing condition

𝜔M = 2𝜔2 ⋅
𝐿1

𝐿1 + 𝐿2S + 𝐿SD
, (2)
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Fig. 1. (a) Sketch of a typical MIEZE setup. Along their flight path (from left to right),
neutrons are first spin polarized (P) and manipulated by a sequence of two RFSF operated
at field frequencies 𝜔1 and 𝜔2 ≠ 𝜔1, respectively. Neutrons’ spin are then analyzed (A),
before being scattered by a sample (S) and detected by a time-resolved (ToF) detector
(D). Inset: Superposition of a static field 𝐵⃗S and radio-frequency field 𝐵⃗RF as produced
by the RFSF. 𝐵⃗RF is rotating in the plane perpendicular to 𝐵⃗S at an angular frequency
𝜔 = 𝛾n|𝐵⃗S|, where 𝛾n = 2𝜋 ⋅ 2.916 kHz G−1 is the neutron gyromagnetic ratio. (b) Energy
diagram of a neutron wave packet traveling across the MIEZE setup [5]. The initial wave
function is split into two components with opposite spin, as quantified along the static
field 𝑧-direction. This results in an energy difference 𝛥𝐸 = 2ℏ𝜔1, which is reversed at the
second flipper, yielding 𝛥𝐸 = 2ℏ(𝜔2 −𝜔1). The recombination of the neutron wave packet
takes place at the detector where the spin phase is given by Eq. (1).

leading to a purely harmonic phase oscillation 𝜑D(𝑡D) = 𝜔M ⋅ 𝑡D at
the detector position, even for a coarsely monochromated beam as
prepared by a velocity selector. Placing a spin analyzer (A) between
the second RFSF and the detector (D) transforms the phase oscillation
into an intensity modulation 𝐼D(𝑡D) = 𝐼0∕2 ⋅

{

1 +  ⋅ cos[𝜑D(𝑡D)]
}

, which
can be recorded using a time-resolved detector and where  is the
signal contrast. If the neutron beam interacts with a sample (S), located
between the analyzer and the detector, the time-dependent intensity will
be modified by its dynamics. Indeed, energy transfers ℏ𝜔 will induce
a delay 𝛥𝑡D in the neutron propagation time over the distance 𝐿SD.
Averaging this effect over all possible energy transfers yields a finite
contrast

 ∝ ⟨cos
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)
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where 𝑚n is the neutron mass and ℎ Planck’s constant. Note that the
definition of 𝛥𝑡D in Eq. (3) is valid in the case of energy transfers which
are centered around ℏ𝜔 = 0 and small with respect to the incoming
neutron energy (quasi-elastic scattering). Assuming a 𝜔-symmetric scat-
tering function (𝑞, 𝜔), Eq. (3) is equivalent to [20]
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3 .

In a MIEZE experiment, in full analogy with NSE spectroscopy,
we thus have access to the intermediate scattering function, probing
sample dynamics over time scales given by the instrumental Fourier
time 𝜏, which can reach several 100 ns. In contrast to usual neutron
spectroscopy techniques (three-axis, time-of-flight or backscattering),
this high-resolution is achieved without drastic loss of intensity since
the measured signal does not depend on beam monochromaticity (Eqs.
(1) and (2)). More interestingly, the main advantage of MIEZE is that the
measurement is not affected by any depolarizing sample (spin incoher-
ent scatterers [2], multi-domain ferromagnets [3], etc.) or environment
(e.g. large magnetic fields [4]), as opposed to NSE.

On the downside, high-resolution can only be reached if no spurious
spin phase shift is introduced in the problem, such a ones due to
imperfections of the spin manipulation devices or to path length differ-
ences throughout the setup. Altogether, this results in an experimental
contrast which takes the general form [21]

(𝑞, 𝜏) = coils(𝜏) ⋅sample(𝑞, 𝜏) ⋅det (𝑞, 𝜏)
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where the overall reduction factor  has to be properly quantified in
order to correct data and deduce the intrinsic intermediate scattering
function.

In practice, an analytical form of coils cannot be obtained since it
involves fine details of the field distribution produced by the RFSF.
However, the recent proposal to adopt a longitudinal (instead of the
standard transverse) field geometry for the RFSF [22] allows keeping
this term close to 1 in the experimental limit. This stems from a self-
correction of RFSFs field inhomogeneities and a strongly suppressed
field integral variation for divergent flight paths, notably reducing the
current needed in correction (Fresnel) coils with respect to the NSE case
(by a factor 3 at least) [23]. In what follows, we shall work under the
assumption coils = 1, keeping in mind that its actual value has to be
measured before the experiment is performed.

The question of quantifying the reduction factors related to path
length inhomogeneities due to sample size and detector thickness –
sample and det , respectively – has first been tackled numerically
in [24]. In Refs. [21,25], the problem has been further specified by a
combination of analytical calculations and Monte-Carlo simulations.

In this paper, we propose more general expressions for sample in
the case of plate-like samples (parallelepipeds or disks), as usually
encountered in soft-matter physics. We treat the case of a parallel
incoming beam and the more realistic situation involving finite beam
divergence (Section 2). In Section 3, we calculate the det term.
Altogether, this allows defining the (𝑞, 𝜏)-range which is accessible
under chosen experimental conditions and establishes MIEZE has an
interesting counterpart of NSE (Section 4). Our findings call for the
design of a MIEZE-SANS spectrometer, allowing to study the structure
and ps-μs dynamics of any kind of large scale objects on a single
instrument (Section 5).

2. Path length differences due to sample size and beam divergence

Let us consider a scattering configuration as depicted in Fig. 2a. In
a first step, we shall treat the case of a parallel incoming beam where
path length differences with respect to the optical axis read

𝛥𝐿2 = 𝑥 −
𝑥 ⋅ cos 𝜃D + 𝑦 ⋅ sin 𝜃D

cos
(

2𝜃 − 𝜃D
) , (6)

where 𝑥 and 𝑦 are the components of the vector 𝑟 denoting the distance
of an arbitrary scattering point to the center of the sample. This leads
to a phase difference at the detector given by

𝛥𝜑D = 2𝜋
𝛥𝐿2
𝛬

, (7)

where 𝛬 = 2𝜋𝑣∕𝜔M is the distance traveled by a neutron of velocity
𝑣 over one period 2𝜋∕𝜔M of the oscillating signal [21]. The contrast
reduction factor is obtained by averaging cos

(

𝛥𝜑D
)

over all possible
neutron–sample interaction points. We end up with the following
reduction factor:
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