Accepted Manuscript

Gaseous and dual-phase time projection chambers for imaging rare processes

Diego González-Díaz, Francesc Monrabal, Sebastien Murphy

 PII:
 S0168-9002(17)30994-4

 DOI:
 https://doi.org/10.1016/j.nima.2017.09.024

 Reference:
 NIMA 60103

To appear in: Nuclear Inst. and Methods in Physics Research, A

Received date : 16 June 2017 Revised date : 10 September 2017 Accepted date : 12 September 2017

Please cite this article as: D. González-Díaz, F. Monrabal, S. Murphy, Gaseous and dual-phase time projection chambers for imaging rare processes, *Nuclear Inst. and Methods in Physics Research, A* (2017), https://doi.org/10.1016/j.nima.2017.09.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Gaseous and dual-phase time projection chambers for imaging rare processes

Diego González-Díaz $^{\mathrm{a},*},$ Francesc Monrabal $^{\mathrm{b}},$ Sebastien Murphy $^{\mathrm{c}}$

^aInstituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Spain ^bDepartment of Physics, University of Texas Arlington, USA ^cETH Zurich, Institute for Particle Physics, Switzerland

Abstract

Modern approaches to the detection and imaging of rare particle interactions through gaseous and dual-phase time projection chambers are discussed. We introduce and examine their basic working principles and enabling technological assets.

 $Key\ words:$ Time Projection Chambers, TPCs, drift chambers, imaging chambers PACS: 29.40, Cs

Contents

1	1	Introduction	1
2	2	Images, patterns and their building blocks	3
3	2.1	Generation of primary ionization	5
4	2.2	Generation of scintillation (primary and secondary)	9
5	2.3	Other information bits	12
6	3	Technical problems, solutions, and enabling	
7		technological assets	12
8	3.1	Collection of the event primary information	12
9	3.2	Detection of charge and light	17
10	3.3	Formation of the image	22
11	3.4	The role of pressure	27
12	3.5	The role of gas mixture	28
13	3.6	Microphysics modelling and simulation tools	30
14	3.7	HV and field	31
15	3.8	Cryogenics	33
16	4	Gaseous chambers	33
17	4.1	Low energy nuclear physics	35
18	4.2	Neutrino-less double beta decay $(\beta\beta 0\nu)$	37
19	4.3	WIMP dark matter	40
20	4.4	Neutrino oscillations	43
21	4.5	Solar axions	45
22	5	Dual-phase chambers for neutrino and dark matter	
23		physics	46
24	5.1	WA105 and DUNE	46
25	5.2	LUX, PandaX and XENON	49
26	5.3	DarkSide	50

* Corresponding author.

Email address: Diego.Gonzalez.Diaz@usc.es (Diego González-Díaz).

5.4 Future projects 5227 6 Other TPCs and ideas $\mathbf{52}$ 28 6.1 Other TPC types 5229 6.2 Novel ideas 5330 7 Conclusions 5531 Acknowledgements 5532 References $\mathbf{55}$ 33 1. Introduction 34

The introduction of the time projection chamber (TPC) 35 by David Nygren in 1974 [1] has exerted a perdurable influ-36 ence in particle and nuclear physics, casting its shadow over 37 much of today's instrumentation. TPCs revolutionized ex-38 perimentation at colliders with the introduction of a novel 39 scheme for reconstructing particle trajectories, in which 40 electric and magnetic fields would be set parallel to each 41 other [2]: with the passage of charged particles, ionization 42 electrons are locally released in the detector medium and 43 then collected after meter-long drift distances, their spread 44 reduced through the convenient orientation of the E and 45 **B** fields. Once collected at an x,y-sensitive image plane, 46 their arrival times are back-converted to longitudinal posi-47 tions (z) through their average drift velocity, a technique 48 borrowed from drift chambers (e.g., [3,4]). 49

By identifying a preferred alignment relative to the spectrometer's magnetic field, Nygren posited a detector con-51 Download English Version:

https://daneshyari.com/en/article/8167431

Download Persian Version:

https://daneshyari.com/article/8167431

Daneshyari.com