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a b s t r a c t

Homogenization of effective elastic properties of fiber reinforced composites frequently supposed pe-
riodic arrangement of fibers because such microstructures allow analytical or low computational cost
integrations. Hexagonal frame was often preferred than square one which is strongly anisotropic. In
practical situations those periodical microstructures are not realistic. Real microstructures are often
random or if they are periodic their boundaries don't fit with the periodic scheme. We studied with the
help of finite elements samples that exhibit hexagonal arrangement of fibers embedded in a random
distribution. Characteristic length scales of hexagonal area were extracted from observation of stress
maps. Principal results are a short scale in which bulk and shear stresses become structured. On the other
hand we nether reached a size large enough to observe local stress maps similar to those produced by a
periodic model.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Determination of the laws of macroscopic mechanical linear
elasticity of composite materials built with longitudinally arranged
fibers in a matrix (Fiber-reinforced composites) requires, in addi-
tion to knowledge of the laws of the behavior of each individual
component, an averaging of local properties. This process is named
homogenization. The most sensitive step in homogenization pro-
cess is the localization of inclusions, fibers for material under
consideration. In order to get analytical laws, most of the time,
averaging was performed on periodic spatial distributions of the
fibers. The representative volume element (RVE) was then reduced
to an elementary cell surrounding a single inclusion [1]. Real mi-
crostructures are rarely perfectly periodic. They generally exhibit a
random distribution of fibers [2], or a rough periodic distribution
with gap between their real location and the periodic scheme.
Therefore some numerical homogenizations were carried out [3,4]
on material with random distribution of fibers. Boundary-layer
effects on the effective response of fibers reinforced composites
were analyzed in Ref. [5]. The authors focus on the modeling of the

stress and strain in a domain of random composites. The distribu-
tion of the fibers in matrix is assumed random.

Usual periodic schemes were square cells or hexagonal cells.
Square cells distribution presents a strong anisotropy characterized
by two privileged directions. Therefore hexagonal periodic material
is often selected to homogenization of elastic behavior [6]. The
homogenization problem of a periodic composite with nonlinear
hyperelastic constituents and debonded frictionless interfaces was
studied in Ref. [7]. More recently, modeling of the elasticity of
composite and carbon nanotubes fibers reinforced matrix were
given in Refs. [8,9], respectively.

Looking at an inclusion located at a distance r from a test in-
clusion, this inclusion is in reality placed in a bin of sizes rdrdq. At
short distance r the number of fibers in a bins is very sensitive to q

whereas at long distance it becomes independent or quasi isotopic.
On the other hand the boundary conditions of hexagonal periodic
distributions are not plane and consequently far from realistic
situations.

A method to ensure realistic boundary condition consists in
embedding the composite material in an outer region described by
macroscopic laws [10e12]. The present approach is rather similar
but in order to avoid building macroscopic constitutive law for the
outer region it was a random composite material too. The outer* Corresponding author.
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region was build with similar fibers and matrix than the inner
periodic materiel with a same volume fraction. Experiments were
carried out with the help of a finite elements code on samples in
which the sizes of the hexagonal inner region was varied. Results
were compared to behavior of a single hexagonal cell as it was used
in homogenization. The aim of this study is to determine charac-
teristic sizes of the hexagonal region in which local behavior of
stress field become similar to infinite periodic material.

A basic question is the efficiency of periodic model to predict
effective properties of random or imperfectly periodic composites
at microscopic scale. For that purpose we focus on characteristic
sizes of hexagonal periodic area in which local behavior of stress
field become similar to infinite periodic material.

Section 2 describes the methodology employed to generate
numerical samples. Section 3 summarizes the mesh technique,
boundary conditions, finite elements modeling and homogeniza-
tion procedure. Section 4 presents local results on in-plane bulk
and shear stresses that will be discussed in conclusion.

2. Generation of microstructures

Each microstructure, or sample, was an arrangement of 200 fi-
bers distributed in parallel in a volume of square section. The fiber
volume fraction was remained constant at0.5 ¼ 50%. Young's
moduli and Poisson's ration were respectively for the matrix and
the fibers:Em ¼ 10Gpa, Ef ¼ 1000Gpa and nm ¼ nf ¼ 0.3.

Four configurations were studied. They are sketched on Fig.1. All
configurations were built around a test fiber (in grey) located in the
center of the cross section. Various circular areas, centered on the
test fiber, were filled by a periodic hexagonal distribution of fibers.
The rest of the section was then completed by a random distribu-
tion of fibers. These configurations are called Hexa7, Hexa19, …,
Hexa61 inwhich numbers indicate the number of fiber hexagonally
arranged.

In addition a sample so called random in which 199 fibers were
randomly located around the test fiber was build, Fig. 2a. It could be
imagine that it was a limit case with only one hexagonal inclusion.

Simulations were also performed on infinite periodic hexagonal
fiber reinforced material which will be used as reference, Fig. 2b. As
above mentioned, in such case the RVE is reduced to a single in-
clusion centered in a hexagonal cell of matrix, see Fig. 2b.

3. Homogenization and numerical procedure

3.1. Homogenization method

Effective properties of the different samples were provided by a
finite element method that was still used for homogenization of

effective properties of reinforced composites. Therefore, the
macroscopic strain E and the macroscopic stress S are introduced,
according to the definition of Hill. They derive from themicroscopic
strain ε and the microscopic stress s obeying these equations:

E ¼ 〈ε〉 ¼ 1
V

Z
V

ε d V (1)

E ¼ 〈s〉 ¼ 1
V

Z
V

s d V (2)

with V denoting the domain occupied by the considered unit cell of
composite materials.

The multi-scale character of the studied microstructures is used
to carry out the averaging procedure. It should be noted that the
periodic unit cells are valid representative volume elements (RVEs)
of the considered microstructures. FE simulations were conducted
on the RVE of each geometry in order to characterize their ho-
mogenized elastic properties under different boundaries conditions
(see section 3.2). The RVEs were meshed with quadratic elements
and the FE code Z-set (http://www.zset-software.com/) was used
for the simulations.

For transverse isotropic problems, in the case of two phases,
fibers f in a matrixm, the plane bulk moduli km and kf and the plane
shear moduli mm and mf of the matrix and fibers are related to the
Young's moduli Em and Ef and Poisson's ratios nm and nf as follows:

ki ¼
Ei

2ð1þ niÞð1� 2niÞ
; mi ¼

Ei
2ð1þ niÞ

; i ¼ m; f (3)

3.2. Boundary conditions

Two classical boundary conditions, usually used in computa-
tional homogenization, were prescribed on the boundary of the
domain [13]. For linear elasticity, these conditions are kinematic
uniform boundary conditions (KUBC) and periodicity conditions
(PBC). It should be noted that the minimal size required to estimate
the effective properties is lower for periodic boundary conditions
than for KUBC ones. So results converge faster with periodic
boundary conditions. Terada et al. (2000) [14] claimed that the PBC
provide themost efficient estimation among the class of admissible
boundary conditions for statistically homogeneous media. They
expressions are:

� KUBC is described by imposing the displacement u at point x
which belongs to the boundary vV:

Fig. 1. Samples of configurations: Hexa7, Hexa19, Hexa37 and Hexa61.
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