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a b s t r a c t

This paper presents a static analysis of laminated beams by using a 6 degree-ofefreedom hybrid type
quasi-3D higher order shear deformation theory (HSDT). The governing equations are derived by
employing the principle of virtual work and solved by means of Hermite-Lagrangian finite element
method for laminated beams with several boundary conditions. A mixed interpolation, C1 cubic Hermite
and a C0 linear Lagrange interpolation are used for the kinematic variables. Different types of shear strain
shape functions were introduced a priori and in general manner to model the displacement field of the
laminated beams. Convergence studies were performed in order to validate the HSDTs solved through
finite element method and the results are compared with a Navier solution. Numerical results of the
present generalized quasi-3D theory are also compared with FEM solutions predicted by other HSDT and
with experimental results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials have numerous advantages compared to
traditional metallic materials. However, laminated composite beam
studies are not simple, and for example, a good model that can
reproduce transverse shear stresses in the thickness direction is
required, since laminated beams have considerable transverse
stress fields. The classical theories for beams are inadequate in this
case because they neglect transverse shear deformations. To ac-
count for this effect, higher order shear deformation theories
(HSDTs) are necessary.

The first order shear deformation theory (FSDT) is an improve-
ment over the Euler-Bernoulli theory. However, this theory has
limited use because it assumes a constant transverse shear defor-
mation through the thickness of the beam. To overcome the limi-
tations of this theory, numerous HSDTs for laminated beams have
been developed to include the effects of transverse shear de-
formations. Khdeir and Reddy [1] studied the bending of cross-ply
laminated beams using the classical beam theory, FSDT and two
HSDTs. A shear correction factor for laminated rectangular beams
has been derived by Raman and Davalos [2].

Pagano [3] presented the elasticity solutions for laminated
beams in cylindrical bending, and these results are widely used for
comparison of closed-form solutions. Aydogdu [4] proposed a HSDT
for the static and dynamic analysis of laminated plates and beams.
A HSDT with third-order axial effects has been presented by Cook
and Tessler [5]. Chen et al. [6] developed an analysis of laminated
beamswith a sinusoidal load using amodified couple-stress theory.
Zigzag models for the bending analysis of composite beams have
been presented by Arya et al. [7] and Icardi [8]. Mantari and Canales
[9] developed a quasi-3D HSDT theory for the bending analysis of
simply supported laminated beams subjected to sinusoidal, uni-
formly distributed, linearly varying and point loads. Mantari and
Yarasca [10] modeled functionally graded composite beams using a
quasi-3D hybrid theory that includes thickness stretching effects.
Vo and Thai [11] developed a shear deformation theory for the
static analysis of composite beams. An assessment of zigzag the-
ories for the analysis of laminated beams has been presented by
Icardi and Sola [12].

Further developments of Finite Element Analysis (FEA) to
consider HSDTs have been performed. Lo et al. [13] presented a
HSDTmodel for composite beams and used it to obtain closed-form
and finite element solutions. Sciuva et al. [14] developed beam el-
ements for the analysis of composite beams using a zig-zag theory.
Kant and Manjunath [15] developed a beam finite element for the
analysis of multilayered beams with a sinusoidal loading, and* Corresponding author.
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presented a HSDT that estimated transverse stresses integrating the
equations of equilibrium to get accurate results [16]. An analysis of
laminated beams using a sine finite element has been presented by
Vidal and Polit [17]. Vo and Thai [18] developed a finite beam
element to study the vibration and buckling of composite beams.
Thin-walled beams are structural members of great importance,
and analyses of this structure is given in Refs. [19e23]. Tomodel the
stresseswith a smoothness via FEM, Hermite-cubic polynomial was
used to ensure C1 continuous elements. It is important to remark
that the generation of Hermite polynomials is described in many
mathematical texts [24e26].

A unified formulation known as Carrera’s Unified Formulation
(CUF) has been developed and applied for the analysis of laminated
beams in quasi-3D manner. Carrera et al. [27] presented beam el-
ements with arbitrary cross-sections using this unified formulation.
Further progress has been done to develop a static analysis of
laminated composite beams in Catapano et al. [28]; to model
laminated structures with fibers, matrices and multilayers in Car-
rera et al. [29]; to consider trigonometric, exponential and zig-zag
theories in Carrera et al. [30] and Filippi and Carrera [31], and to
analyze composite structures using a multi-line approach in Car-
rera and Pagani [32]. The unified formulation is described in
Refs. [33,34].

Beam theories have been used for special applications and to
analyze engineering structures.Milazzo andOrlando [35] presented
a beam finite element for the analysis of magneto-electro-elastic
multilayered composite structures. Zemanov�a et al. [36] developed
a finite element approach to model laminated glass beams under
finite strain. Apedo et al. [37] modeled inflatable beams made from
orthotropic materials taking into account geometric nonlinearities
and the inflation pressure. Kapuria and Alam [38] developed a beam
finite element for the dynamic analysis of piezoelectric beams. Vidal
and Polit [39] presented an analysis of thermo-mechanical lami-
natedbeamsusing afinite element approach. Roche andAccorsi [40]
developed a finite element model to analyze laminated beams tak-
ing into account delaminations. Nonlinear analyses of piezoelectric
fiber reinforced laminated beams has been developed by Shen et al.
[41] and Mareshi et al. [42].

In this paper, a hybrid type quasi-3D HSDT for the bending
analysis of laminated beams is solved by Hermite-Lagrangian finite
element technique. Infinite quasi-3D hybrid type (polynomial, non-
polynomial, and hybrid) HSDTs solved by FEM can be derived by
using the present generalized theory for beams. The beam gov-
erning equations are derived by employing the principle of virtual
work for laminated beams subjected to transverse load for simply
supported, clamped-clamped, clamped-free and clamped-simple
support boundary conditions. The results are compared with
analytical solutions and with experimental results. Convergence
studies are performed in order to guaranty the finite element
technique adopted to solve the present hybrid type quasi-3D HSDT
for beams.

2. Analytical modeling

2.1. Beam under consideration

A cross-ply laminated beam of length L, width b and a total
thickness h is considered in the present analysis. The beam oc-
cupies the following region:

0 � x � L; �b=2 � y � b=2; �h=2 � z � h=2

The displacements are assumed to be small, and the body forces
are neglected. The beam is subjected to lateral load only, and two
dimensional constitutive laws are used (x and z).

2.2. Theoretical displacement field

The displacement field satisfying the free surface boundary
conditions of transverse shear stresses vanishing at a point (x, ±h/2)
on the top and bottom surfaces of the beam, is given as presented in
Ref. [9]:

uðx; zÞ ¼ u0 þ z
�
� vw0

vx
þ q*

vq

vx
þ y*4

�
þ f ðzÞ4

wðx; zÞ ¼ w0 þ gðzÞq
(1)

where u and w are the displacement components in the X and Z
axis respectively. In addition, u0,w0, q and 4 are four unknown
displacements of midplane of the beam. The constants y* and q* are
obtained by considering the criteria to reduce the number of un-
knowns in HSDTs as in Reddy and Liu [43]. They are as a function of

the shear strain shape functions, f(z) and g(z), i.e. y* ¼ �f 0
�
±h
2

�
and

q* ¼ �g(±h/2).
For deriving the equations, small elastic deformations are

assumed, i.e. displacements and rotations are small, and obey
Hooke’s law. The starting point of the present generalized quasi-3D
HSDT solved through Hermite-Lagrangian finite element technique
is the 3D elasticity theory [44]. The strain-displacement relations,
based on this formulation, are written as follows:

εX ¼ ε
1
X þ zε2X þ f ðzÞε3X

εZ ¼ g0ðzÞε6Z
gXZ ¼ g1XZ þ gðzÞg4XZ þ f 0ðzÞg5XZ

(2)

where

ε
1
X ¼ vu0

vx
ε
2
X ¼ �v2w0

vx2
þ q*

v2q

vx2
þ y*

v4

vx
ε
3
X ¼ v4

vx

ε
6
Z ¼ q

g1XZ ¼ q*
vq

vx
þ y*4 g4XZ ¼ vq

vx
g5XZ ¼ 4

(3)

In vector form this can be expressed as:

ε
T ¼ f εX εZ gXZ g (4)

ε ¼ ε
1 þ zε2 þ f ðzÞε3 þ gðzÞε4 þ f 0ðzÞε5 þ g0ðzÞε6 (5)

where

ε
1 ¼

8<
:

ε
1
X
0
g1XZ

9=
; ε

2 ¼
8<
:

ε
2
X
0
0

9=
; ε

3 ¼
8<
:

ε
3
X
0
0

9=
;

ε
4 ¼

8<
:

0
0
g4XZ

9=
; ε

5 ¼
8<
:

0
0
g5XZ

9=
; ε

6 ¼
8<
:

0
ε
6
Z
0

9=
;

(6)

The stresses can be written using the same approach

sT ¼ fsX sZ tXZ g (7)

The linear constitutive relations become:

s ¼ Qε (8)

where
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