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a b s t r a c t

An analytical method for vibration and buckling behaviours of Functionally Graded (FG) beams with
various boundary conditions under mechanical and thermal loads is presented. Based on linear strain-
displacement relations, equations of motion and essential boundary conditions are derived from Ham-
ilton’s principle. In order to account for thermal effects, three cases of the temperature rise through the
thickness, which are uniform, linear and nonlinear, are considered. The exact solutions are derived using
the state space approach. Numerical results are presented to investigate the effects of boundary con-
ditions, temperature distributions, material parameters and slenderness ratios on the critical tempera-
tures, critical buckling loads, and natural frequencies as well as load-frequencies curves, temperature-
frequencies curves of FG beams under thermal/mechanical loads. The accuracy and effectiveness of
proposed model are verified by comparison with previous research.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a class of composites
materials in which the material properties gradually vary in a
specific direction. By this way, the distribution of strength and
stiffness can be customised in a designable manner and the
delamination which may occur in laminated composites can be
avoided. Due to the excellent properties in mechanical and thermal
behaviours, a wide range of application for functionally graded (FG)
structures can be found in different fields, leading to the intensive
study in many types of FG structures in the last three decades.

By using various theories such as The Classical Beam Theory
(CBT), First-order Beam Theory (FOBT), Higher-order Beam Theory
(HOBT), Quasi-3D beam theory and Carrera Unified Formulation
(CUF), many numerical methods have been developed to deal with
vibration and buckling behaviours of FG beams under mechanical/
thermal loads. Some of popular numerical approaches are Lagrange

multipliers, Rayleigh Ritz method, dynamic stiffness formulation,
Chebyshev collocation method, finite element method and differ-
ential quadrature method [1e15]. For analytical approaches, a
Navier solution has been widely used to study various mechanical
behaviours of simply supported beams [16e20]. In addition,
another analytical solution based on the state space approach,
which can deal with different boundary conditions, was proposed
by Khdeir and Reddy [21e23] to study the behaviour of cross-ply
laminated beams. This approach was also applied for the vibra-
tion analysis of FG and FG sandwich beams [24,25]. Regarding the
thermal environment, FG beams can be designed in a smart way to
adapt the environment changes, which results in a good attention
in studying such behaviours. Sankar and Tzeng [26] used CBT to
study the thermal stresses of simply supported FG beams. The FOBT
was employed to investigate various behaviours of FG beams such
as dynamic responses under a moving load [27], thermal stability
with non-linear hardening elastic foundations [28], thermal dy-
namic buckling [29], and thermal buckling and post-buckling with
non-linear elastic foundation [30]. Wattanasakulpong et al. [31]
used Ritz method based on the HOBT to study the buckling and
vibration of FG beams, however, it was limit on uniform tempera-
ture distribution only. Based on CUF, Giunta et al. [32] developed
Navier solution to analyse the static behaviour of FG beams under
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thermo-mechanical loads. However, as far as the authors are aware,
there is no analytical solution for vibration and buckling of FG
beams using HOBT with various boundary conditions under me-
chanical/thermal loads in a unitary manner. In addition, effects of
various temperature distributions on natural frequencies and crit-
ical temperatures of FG beams are also need further studies. As a
result, it is also the main objective of this paper. Based on linear
strain-displacement relations, equations of motion and the essen-
tial boundary conditions are derived from Hamilton’s principle.
State space-based analytical approach is used to obtain closed-form
solutions for FG beams with various configurations. Three cases of
the temperature rise through the thickness, which are uniform,
linear and nonlinear, are considered. Numerical results are pre-
sented for FG beams with various boundary conditions, tempera-
ture distributions and slenderness ratios to investigate the critical
temperatures/loads, and natural frequencies as well as load-
frequencies curves, temperature-frequencies curves. The accuracy
and effectiveness of proposed model are verified by comparison
with previous research.

2. Theoretical formulation

2.1. Functionally graded beams and temperature-dependent
material properties

Consider a FG beammade frommetal and ceramicwith the span
of a and rectangular cross-section of b� h, as shown in Fig.1. Vol-
ume fraction of ceramic is given by power law distribution:

VcðzÞ ¼
�
z
h
þ 1
2

�p

(1)

where p is the material parameter.
The thermo-elastic material properties are considered as a

function of temperature T and can be calculated for ceramic and
metal as described in Ref. [33]:

PðTÞ ¼ P0
�
P�1T

�1 þ 1þ P1T þ P2T
2 þ P3T

3
�

(2)

where P denotes Young’s modulus E, mass density r and thermal
expansion coefficient a, respectively. P�1,P1,P2 and P3 are the tem-
perature dependent coefficients, which are listed in Table 1 for
various materials. Fig. 2 presents the material properties of ce-
ramics and metals with respect to the temperature change. Based
on the power rule together with the temperature-dependence
described in Eq. (2), the typical material properties P(z,T) of beam
through the thickness are described as:

Pðz; TÞ ¼ ½PcðTÞ � PmðTÞ�VcðzÞ þ PmðTÞ (3)

The material properties are calculated by Eq. (2) for ceramic and
metal at the specific temperature and followed by Eq. (3) to obtain
the values at z. It should be noticed that the Poisson’s ratioy is
evaluated as the average of ceramic and metal values at T0¼ 300 K.

2.2. Temperature distribution

2.2.1. Uniform Temperature Rise (UTR)
The temperature of the whole beam is assumed uniform and

increased from T0¼ 300K to the current value. It means that the
temperature at a point is T(z)¼T0þDT, where DT is the temperature
rise.

2.2.2. Linear Temperature Rise (LNR)
The temperature in the ceramic and metal faces of FG beam is

assumed to be Tc and Tm. In this case, the temperature on the metal
surface is supposed to be Tm¼ 305K, whereas on the ceramic sur-
face it is surged to Tc¼ T0þDT. With the assumption of linear dis-
tribution, the temperature through the thickness can be
determined as:

TðzÞ ¼ Tm þ DT
�
1
2
þ z
h

�
(4)

2.2.3. Non-linear Temperature Rise (NLNR)
The applied temperature is similar to the case of LNR; however,

the temperature distribution is set to follow the heat conduction
rule and obtained by solving the steady state equation [27] as:

TðzÞ¼ TmþTc�Tm
C
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where C ¼ 1� Kcm
ðpþ1ÞKcm

þ K2
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Kcm¼ Kc� Kmand Kc and Km are the thermal conductivity of ceramic
and metal calculated at the surfaces.

2.3. Kinematics

Assuming that the deformation of FG beam is only in the x� z
plane and let u(x,z,t) and w(x,z,t) be the axial and transverse dis-
placements at an arbitrary point. These components can be
expressed in terms of the displacement components on the neutral
line as:

uðx; z; tÞ ¼ Uðx; tÞ � zW ’ðx; tÞ þ
�
z� 4z3

3h2

�
fxðx; tÞ

¼ Uðx; tÞ � zW ’ðx; tÞ þ f ðzÞfxðx; tÞ (6a)
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Fig. 1. Coordinates of FG beam and temperature distributions.
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