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a b s t r a c t

A Finite Element (FE) model, based on the tunneling effect, has been developed for simulating the
electrical behavior of carbon nanotube-filled polymers. The geometry modeled belongs to a three-
dimensional plate with an equivalent to the nanocomposite physical structure and electrical behavior
evaluated using homogenization techniques. The FE model, after validated against experimental and
numerical data from the literature, has been applied to conduct a parametric study on the effects of
nanotube’s volume fraction, electrical conductivity and aspect ratio and polymer’s height of barrier. The
numerical results show that with increasing the nanotube volume fraction, electrical conductivity and
aspect ratio the electrical conductivity of the nanocomposite increases significantly. The height of barrier
has effect only at large volume fractions where it varies conversely with electrical conductivity. The
proposed FE model is simple compared to the existing numerical models, requires very low computa-
tional effort and may be potentially used for the design and optimization of multifunctional
nanocomposites.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

At present, carbon nanotubes (CNTs) are widely used as nano-
fillers in polymers due to their excellent mechanical and electrical
properties aiming to enhance the mechanical strength and elec-
trical behavior of the parent material [1e3]. Such nanofilled ma-
terials are referred in the literature as ‘multifunctional materials’.
The enhanced electrical behavior of CNT/polymers is exploited for
sensing damage in fiber-reinforced polymer composites [4,5], for
building integrated circuits at smaller scales [6] as well as for
developing conductive structural adhesives [7]. Although the
design of multifunctional materials is mainly conducted using
manufacturing trials and experiments, reliable modeling- and
simulation-driven design tools are very attractive as they are cost-
and time-effective.

A considerable number of numerical approaches have been
proposed for simulating the electrical behavior of nanocomposites.
Most of the approaches are based on a (three-dimensional) 3D
resistor network model [7e13]. Hu et al. [7] used a 3D statistical
percolation model and a 3D resistor network model to predict the

electrical properties of CNT nanocomposites and the effects of
critical parameters. Spinelli et al. [8] and De Vivo et al. [9] simulated
CNT-based nanocomposite as a 3D material containing randomly
distributed conducting cylinders. They estimated the variation of
electrical conductivity of the nanocomposites structure for
different volume loadings of the conducting phase through a 3D
resistor network at which the tunneling effect between conducting
clusters has been taken into account. Also, by using a Monte Carlo
method, the electrical conductivity and the percolation thresholds
of the obtained structures were analyzed as a function of geomet-
rical and physical influencing parameters. Hu et al. [10] combined a
3D statistical resistor network model incorporating the tunneling
effect between neighbouring CNTs and a fiber reorientation model.
Bao et al. [11] developed an improved 3D percolation model to
investigate the effect of the alignment of CNTs on the electrical
conductivity of nanocomposites. In the model, both intrinsic and
contact resistances were considered, and a new method of resistor
network recognition that employs periodically connective paths
was developed. This method leads to a reduction in the size effect of
the representative cuboid in the Monte Carlo simulations.

In the present work, a simplified numerical model, compared to
those described above, is proposed for simulating the electrical
behavior of CNT-based nanocomposites. The model is based on the
finite element (FE) method, thus incorporating many of the* Corresponding author.
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advantages of the method such as the low programming and
computational effort and transferability between different codes.
Moreover, the model may be used as a basis or as module in a
multiscale approach which could be used for simulating the elec-
trical behavior of structural parts made from CNT-based
nanocomposites.

2. Theory ¡ conduction mechanism

The transition from the insulation behavior to the conductive
one is the result of electrical path formation by the filler compo-
nent. CNT-reinforced polymers are characterized by the random
distribution as well as the random orientation of the filler material.
As a consequence, in the composite material, paths are formed by
CNTs, while, due to the unavoidable distance between the CNTs, the
electrical path continuity is achieved by the existence of tunneling
resistance, which is the main mechanism being responsible for
governing the electrical conduction in the nanocomposite. For this
reason, in the model, the charge transport between two consecu-
tive CNTs has been taken into account using the tunneling resis-
tance Rtunnel derived from [12]:
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where h is the Planck’s constant, d is the distance between CNTs, e is
the electron charge, m is the mass of electron and l represents the
height of barrier that takes values of a few eV. The network system,
which is formed by two conductive particles (MWCNTs in this case)
separated by a thin layer of insulating polymer, could be described
as a system of two metallic electrodes separated by an insulating
film in accordance to [12]. The equilibrium conditions require that
the top of energy gap of the insulator to be positioned above the
Fermi level of the MWCNTs. As a consequence, the action of the
polymer is to introduce a potential barrier between the conductive
particles. The electronic current can flow through the polymer re-
gion between the twoMWCNTs if: (a) the electrons in the MWCNTs
have enough thermal energy to surmount the potential barrier and
flow in the conduction band, (b) the barrier is thin enough to
permit the penetration by electric tunnel effect. It is important to
note that this analysis/equation is used for low-temperature con-
ditions, so as the current induced by the thermal energy of the
electrons has been neglected. In addition to this, this equation is
valid only fir the case of low voltage applied to the electrodes.

From Eq. (1), it can be noted that the tunneling conductance
decays exponentially with distance d having a characteristic decay
length in the order of a few nanometers. In Fig. 1, Rtunnel is plotted in
log scale against d for different values of l. The use of log scale
transforms the relation from exponential to linear.

3. FE modeling

3.1. Basic assumptions � model development

The geometry of the nanocomposite modeled belongs to a
square 3D plate with thickness equal to 10 CNT’s diameters. The
plate was modeled using the 3D 20-node electric solid element
SOLID231 [13]. The side of the plate is five times CNT’s length, a
value that has been proven to be sufficient enough to represent the
typical nanocomposite conductive architecture [10]. Through the
thickness of the plate ten elements were used, while the number of
elements at the two sides of the plate was determined by the
number of elements representing each CNT as well as by the CNT’s
geometrical characteristics.

The theory of SOLID231 element [13] is based on electromag-
netic field theory described byMaxwell equation. By neglecting the
magnetic field and applying a series of transformations one obtains
the governing equation for quasi-static field

�V$ð½s�VVÞ � V$

�
½ε�VvV

vt

�
¼ 0 (2)

where V is the electric scale potential, ½s� is the electrical conduc-

tivity matrix equals to

2
666666664

1
rxx

0 0

0
1
ryy

0

0 0
1
rzz

3
777777775

and ½ε� is the permittivity
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5. Eq. (2) is the constitutive re-

lations of SOLID231 element and is used to approximate time-
varying electric fields. Neglecting time-variation of electric poten-
tial, Eq. (2) reduces to the governing equation steady-state electric
conduction

�V$ð½s�VVÞ ¼ 0 (3)

The finite element matrix equations are be derived from varia-
tional principles. These equations exist for linear and nonlinear
material behavior as well as for static and transient response. The
electric scalar potential V is approximated over the element as
follows:

V ¼ fNgTfVeg (4)

where {N} is the element shape function and {Ve} is the nodal
electric scalar potential. The application of variational principle and
finite element discretization to the differential Eq. (2) produces the
matrix equation of the form

h
CV

i
fVeg þ

h
KV

i
fVeg ¼ fIeg (5)

where ½KV � ¼ R
vol

ðVfNgÞT ½seff �ðVfNgT ÞdðvolÞ is the element elec-

trical conductivity coefficient matrix, ½CV � ¼R
vol

ðVfNgÞT ½ε�ðVfNgT ÞdðvolÞ is the element dielectric permittivity
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Fig. 1. Variation of tunneling resistance Rtunnel (in log scale) with regard to thickness of
insulated resin d for different values of height of barrier l.
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