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a b s t r a c t

In spectroscopy of charged particles, narrow peaks may appear in continuous spectra if magnetic
transport of the particles is involved. These artefacts, which so far have escaped the attention of in-
vestigators, can develop whenever geometric detection efficiency is less than 100%. As such peaks may
be misinterpreted as new physics, their generation is investigated, both analytically and experimentally,
for various detector configurations, including those used in searches for the spontaneous decay of the
vacuum in heavy-ion collisions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

New phenomena are often discovered as unexpected peaks in
otherwise smooth spectra. Therefore it is of interest to identify
sources of artificial peaks that may lead to wrong conclusions. The
purpose of this article is to show how easy it is to produce narrow
peaks in continuous spectra from seemingly well understood in-
strumental configurations.

We treat the case, widely met in experimental science and
applications, of a point source, placed in a magnetic field that
guides the emitted charged particles to a detector, or to some
other target, see Fig. 1.

We first summarize recent theoretical and experimental results
on unexpected singularities that appear in the so-called magnetic
point spread function (PSF), defined for a monoenergetic source.
We present some improvements of our theory (Section 2), as well
as a measurement of the magnetic PSF in a simple experiment
(Section 3). Based on this, we develop the theory of energy spectra
in the presence of magnetic transport, and show that singularities
in the PSF may lead to prominent structures in an initially smooth
continuous spectrum. Predictions based on this work are tested
experimentally (Section 4). Finally, we apply our findings to past
experiments in positron spectroscopy, which searched for the
spontaneous decay of the vacuum in deep inelastic heavy-ion
collisions (Section 5).

2. The magnetic point spread function of a monoenergetic
source

Recently, the spectroscopy of charged particles was in-
vestigated in the context of neutron β-decay [1]. It was shown
that, following magnetic transport from a monoenergetic point
source to a detector, an infinite number of ring-shaped singula-
rities of radii Rn appear in the source’s image on the detector, as
shown in Fig. 2. In optics, the image of a point source is called the
point spread function of the system. It provides the intensity dis-
tribution f(R) in the image plane as a function of the distance R
from the optical axis. In our case of magneto-optics, we call this
function the magnetic PSF. The singularities in the magnetic PSF
were investigated in more detail in [2]. The topic was further de-
veloped in [3], while experimental effects of these singularities
were first measured in [4]. Although the derivation of the true
magnetic PSF and its singularities is rather simple, it seems to have
escaped the attention of investigators. A first mention of singula-
rities in the context of a one-turn magnetic spectrometer in Ref.
[5] apparently had fallen into oblivion.

The gyration radius of a particle, with charge e and mass m in a
magnetic field of amplitude B, is

θ= = ( )r r r p eBsin , with / , 10 0

with relativistic momentum = ( + )−p c E mc E21 2 2 1/2, and polar angle
θ with respect to the field direction. Following magnetic transport
over a distance z0 in a uniform field, the particle reaches the de-
tector after a number of n′ helical orbits of gyration, with n′¼α/
2π¼z0/d (we reserve the undashed n for integer values of n′). Here
α is the phase angle of the gyrating particle, and d¼2πr0cos θ is
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the pitch of the helix (Fig. 1). Hence, when the particle hits the
detector, its phase angle α on the detector surface (relative to an
azimuthal emission angle φ) depends on the emission angle θ at
the source as

α θ= ( ) ( )z r/ cos . 20 0

The displacement of the particle from the central point of im-
pact (the gray dot in Fig. 1) depends on α as

α α α α α( ) = = ( − ) ( )R r r2 sin 1/2 2 1 / sin 1/2 , 30 0
2 2 1/2

given by simple geometry, cf. Fig. 1. The angle α = z r/0 0 0 is the
smallest occurring phase angle, for emission in the limit θ-0. The
corresponding smallest number of helical orbits is n0¼α0/2π, or

π= ( )n eBz p/2 , 40 0

which is the only parameter of the theory. R(α) from Eq. (3) is
plotted in Fig. 3a) for the same n0 as used in Fig. 2.

The conventional approach to the problem, summarized in [4]
(for references see [2]), leads to the smooth hyperbolic PSF
fconv(R)¼1/(4πRr0), shown in Fig. 2a). In the conventional ap-
proach, it is assumed that all phase angles α‘¼α modulo 2π at the
position of the detector surface, Fig. 1, occur with equal prob-
ability, disregarding the functional relation Eq. (2) of α and θ.

However, a particle emitted with polar angle θ reaches one single
point on the detector, whose corresponding phase angle α (re-
lative to the starting angle φ) is fixed by Eq. (2). Different values of
α on the detector correspond to different angles θ at the source
with a different gyration radii θ=r r sin0 . Hence, with increasing θ,
and thereby increasing α, the impact positions on the detector
move along a spiral. In our figures, all displacements R are shown
in units of gyration radius r0, Eq. (1).

This spiral is seen in Fig. 3b), where the displacement R is
shown not as R(α) in Cartesian coordinates as in Fig. 3a), but as R
(β) in polar coordinates, with β¼α/2þφ. The values of Rn shown
correspond to the maximum values of R reached when α increases
steadily, see Eqs. (6) and (7). When these impact points are aver-
aged over azimuthal emission angles φ, one obtains the rota-
tionally symmetric true PSF f(R). This is the method applied nu-
merically in Ref. [3]. Our analytical method is as follows.

The magnetic PSF is best written as
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with the angular distribution θPd /d cos at the source, where dP is
the emission probability into the solid angle element dcos θ. With

θ αd cos /d from Eq. (2), and with R(α) and α Rd /d from Eq. (3), the
PSF is easily calculated as a function of α, see Eq. (13) of [2]. To
express the PSF as a function of R, however, one needs to invert R
(α), Eq. (3) and Fig. 2a), which is not possible algebraically. This
inversion can, in principle, be done numerically for each value of R,
but this is quite time consuming, in particular if, as in the fol-
lowing sections, we have to integrate the singularity-ridden PSF
over R for many different values of energy E.

We therefore use the approximation described in [1,2], in
which R(α), between two of its zeros (roots), is piecewise ap-
proximated by invertible cosine functions passing through the
maxima Rn of the true R(α) expressed in Eq. (3), which is shown by
the dashed curves in Fig. 3a). The lowest cycle (starting at n¼n0,
for particle emission in the limit θ-0), is numbered = ( )n nfloorf 0 ,
with floor indicating the next integer below n0. There R has its
maximum at

α π α π= [ ( ) ≤ ≤ ( + )] ( )R R n nMax , 2 2 1 , 6n f0f

while for the higher cycles with n4nf,

α π α π= [ ( ) ≤ ≤ ( + )] ( )R R n nMax , 2 2 1 . 7n

In addition, we introduce two improvements: First, we adapt

Fig. 1. A point source of charged particles at x¼0, and a flat detector at z¼z0, are
both coupled by a uniform magnetic guide field Β applied along z. Indicated are the
polar and azimuthal emission angles θ and φ, the radius of gyration r, the pitch of
the helix d, the phase angle α, with α‘¼α modulo 2π, and the displacement R of the
point of impact on the detector from the central point of impact (the gray dot,
reached for emission under θ¼0).

Fig. 2. a) The conventional magnetic PSF on the detector’s x-y surface has a smooth hyperbolic shape ( ) ∝f R R1/conv , with R¼(x2þy2)1/2. b) The true magnetic PSF f(R) has an
infinite number of singularities. c) f(R) in the first quadrant, with radii Rn of the singularities. The PSF is calculated for instrument parameter n0¼2.4, Eq. (4). This value for n0
is obtained, for example, with 1 MeV electrons gyrating through a distance z0¼0.2 m in a 0.36 T field, i.e., gyration radius r0¼ 1.3 cm.
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