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a b s t r a c t

Proper determination of the effective electrode spacing (deff) of an ion chamber ensures proper de-
termination of its collection efficiency either in continuous or in pulsed radiation in addition to the
proper evaluation of the transit time. Boag's method for the determination of deff assumes the spherical
shape of the internal electrode of the spherical ion chambers which is not always true, except for some
cases, its common shape is cylindrical. Current work provides a new approach for the evaluation of the
effective electrode spacing in spherical ion chambers considering the cylindrical shape of the internal
electrode. Results indicated that deff values obtained through current work are less than those obtained
using Boag's method by factors ranging from 12.1% to 26.9%. Current method also impacts the numeri-
cally evaluated collection efficiency (f) where values obtained differ by factors up to 3% at low potential
(V) values while at high V values minor differences were noticed. Additionally, impacts on the evaluation
of the transit time (τi) were obtained. It is concluded that approximating the internal electrode as a
sphere may result in false values of deff, f, and τi.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Evaluation of radiation doses using ion chambers is based on
the determination of ionization in a certain volume of a gas [1–4].
Use of ion chambers in various activities is usually associated in
accurate evaluation of certain quantities of ionizing radiation
which involves the use of a number of correction factors in order
to get correct and reliable readings [5–8].

Usually, the measured current is lower than the expected one
due to incomplete charge collection which is attributed to initial
recombination, volume recombination, and back-diffusion to
electrodes [7–15]. Initial recombination is independent of radia-
tion dose or dose rate, this process occurs when the positive and
negative ions formed in the same charged-particle track meet and
recombine [6,16]. It is highly probable in high LET while in cases of
low LET radiation volume recombination dominates. Additionally,
loss of ions due to diffusion is independent of radiation dose rate
and considers the back diffusion of positive and negative ions to
anode and cathode respectively [17–21].

Numerical evaluation of volume recombination encounters the
use of the effective electrode spacing of the ion chamber as will be
discussed in the following section. In plane parallel ionization

chambers, effective electrode spacing represents the geometrical
separation between the two parallel electrodes, while in cylind-
rical and spherical ion chambers it should be estimated through
equations involving the radii of the internal and external electro-
des [22–25].

Boag has presented a formula for the evaluation of the effective
electrode spacing in spherical ion chambers assuming the sphe-
rical shape of the internal electrode [24]. Although this is true in
some cases [25], in most cases the internal electrode is cylindrical
in shape [24,26]. Current work provides a new trial for more ac-
curate evaluation of the effective electrode spacing of the spherical
ion chambers of cylindrical inner electrodes.

2. Materials and methods

2.1. Theoretical background

The collection efficiency of an ion chamber (f) can be evaluated
according to the following relation:

= ( )f f f f 1i v d

where fi , fv , and fd are collection efficiencies considering con-
tributions of initial recombination, volume recombination, and
back-diffusion loss respectively [7,8,27,28].

For continuous radiation, and according to Boag's treatment of
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Mie's theory [24], the collection efficiency fv can be obtained from
the following formula

η= – ( )f 1 , 2v
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And d is the effective electrode spacing, M is an empirical constant
depending on the nature of the gas (1.99�107 71.7%

V m1/2 s1/2 C�1/2 for air), and
•
q denotes to the rate of charge col-

lected per unit volume of the gas (Cm�3 s�1), and V is the polar-
izing potential [21,27].

In case of pulsed radiation, fv can be calculated using the fol-
lowing formula
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where q is the initial charge density per pulse of the positive and
negative ions collected by the ion chamber during irradiation, α is
the ion recombination coefficient, e is the charge of electron, k1 is
the mobility of positive ions, k2 is the mobility of the negative ions,
and μ depends on the lifetime of ions in the chamber, in case of air
it equals to 3.02�1010 mC�1 V [29].

The effective electrode spacing for the spherical chambers (d)
can be calculated using the following formula [21,24,27,29]:
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where a is the internal radius of the outer electrode and b is the
external radius of the inner electrode, Fig. 1 represents a schematic
representation of a spherical ion chamber.

On the other hand, the effective electrode spacing for the cy-
lindrical chambers (d) can be evaluated using the following for-
mula [24]:
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2.2. A new approach

Eq. (7) assumes the spherical ion chamber electrodes as two
concentric spheres which is not the general case, usually the in-
ternal electrode is cylindrical in shape, and hence the use of Eq. (7)
may result in some differences when evaluating the effective
electrode spacing of the spherical ion chamber.

Instead, the chamber volume can be regarded as two hemi-
spheres as shown in Fig. 2A. The effective electrode spacing of the
upper hemisphere can be evaluated directly from Eq. (7) as the
internal electrode can be regarded as a hemisphere. The lower
hemisphere where the inner electrode is obviously cylindrical can
be regarded as a number (m) of coaxial hemispherical segments of
equal height (thickness), each one can be considered as a cylinder
as shown in Fig. 2B–D, and the effective electrode spacing for each
cylinder can be evaluated from Eq. (8). The total effective electrode

spacing (deff) for the spherical ion chamber is the weighted aver-
age of the corresponding values obtained for the upper hemi-
sphere (dSph) and the second one (dCyl) which is obtained by ap-
proximating the lower hemisphere as multiple coaxial cylinders:

= + ( )d R d R d. . 9eff Sph Cyl1 2

where R1 and R2 comprising the fractional ratios of the spherical
and cylindrical portions with respect to the total chamber volume,
hence R1þR2 ¼ 1, however, for simplicity we assume a special
case where R1 ¼ R2, therefore:
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And dCyl can be estimated through the following relation:
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where wi is the weight factor for a certain spherical segment (ai)
representing the ratio of the volume of this spherical segment (vi)
to the volume of the lower hemisphere as a whole (vh):

=
( )

w
v
v 12i

i

h

As shown in Fig. 2B:2D, the larger the number of spherical
segments the better simulation of the hemispherical volume. vi

Fig. 1. Schematic representation of an ion chamber: 'a' is the radius of the internal
electrode; 'b' is the radius of the external electrode.
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