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A new closed-form equation for the local instability of pultruded fiber-reinforced plastic beams in
bending is derived by substituting suitable buckling approximating functions for compression flange and
web into the total potential energy functional. Being obtained from a full-section approach, the equation
does not require independent calculations for web and compression flange, which are typical of discrete
plate analysis. Moreover, the contribution of the elastic restraint stiffness commonly used to reproduce

the web—flange junction behavior naturally arises in the proposed formulation because of the assumed
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buckling shape. From comparisons with available experiments on 10 beams and FE solutions for 55
beams, the proposed equation appears to be accurate and reliable.
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1. Introduction

Pultruded Fiber-Reinforced Plastic (PFRP) thin-walled profiles
can be considered, from a macro-mechanical viewpoint, as linearly
elastic, homogeneous, and orthotropic, with the axes of orthotropy
coinciding with the principal axes of the cross-sections. Their
behavior is highly affected by the relatively low values of the
Young's modulus, especially in the transverse direction [1], and of
the transverse shear elastic modulus [2,3], which more or less co-
incides with that of the polymeric resin and shows a strong time
dependency (see Ref. [4] and references cited herein). Moreover,
warping strains play an important role in the mechanical response
of composite thin-walled beams, especially in the case of open
sections [5]. These features can provoke non-negligible increases in
deformations and deflections with respect to isotropic materials
and affect both local and global buckling loads. Finally, post-
buckling of pultruded shapes is influenced by the strength of
web—flange junctions [1,6,7], resin-rich zones from which failure
typically propagates [8—10]. As a consequence, PFRP profiles
exhibit a complex behavior related to the multi-interaction be-
tween shear deformability, non-uniform torsion, and creep, and
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therefore require suitable modeling criteria.

The flexural-torsional (global) response of PFRP beams has been
widely investigated in the literature with regard to both vibrations
[11] and buckling [5,12—15]. The present paper, instead, focuses on
the local bucking phenomenon, starting from a wide overview of
the literature, reported in the next section.

2. Literature review

A brief survey of the literature concerning analytical studies on
local buckling of composite structural sections is presented herein.
The referenced papers are subdivided into two main categories
according to the type of analysis presented.

2.1. Discrete plate analysis

The local buckling analysis of a PFRP shape under axial
compression, uniform bending, pure shear, or combinations of the
relevant stress states is generally reduced to the analysis of each of
the wall segments comprising the shape, which is considered as an
individual orthotropic plate that has suitable boundary conditions
and is subjected to in-plane loading. In this approach, usually
referred to as discrete plate analysis, the longitudinal edges shared
by two or more wall segments are usually provided with a
continuous elastic restraint, reproducing the stiffening effect due to
the adjacent plates.

In Ref. [16], the local instability of carbon-fiber-reinforced
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flanges of I-section beams and columns was analyzed by taking the
web restraint coefficient into account.

In Ref. [17], a model for the local buckling analysis of I- and box
sections was developed, considering the compression flange as an
orthotropic plate that was elastically restrained in correspondence
with the web—flange junctions. The rotational spring stiffness was
assumed to coincide with the bending stiffness of the web in the
transverse direction.

The buckling load of orthotropic plates in uniaxial compression,
simply supported along the loaded edges and having one of the
unloaded edges elastically restrained and the other free, was found
in Ref. [18] by solving the governing characteristic transcendental
equation numerically. On the basis of a parametric analysis high-
lighting the role of the coefficient of elastic restraint, R, a procedure
is presented to estimate, from test data on FRP beams, the value of R
to be used in the local buckling analysis of the compression flange.

Local buckling of box and I-sections under non-uniform bending
was analyzed in Ref. [19]. In particular, it was assumed that bending
is mainly resisted by the flanges, which were subjected to constant
compression or tension stresses, whereas non-uniform bending
stresses on the web panels were ignored. The web panels were
instead subjected to in-plane shear. The local buckling of
compression flanges and webs, elastically restrained in corre-
spondence with the web—flange junctions, was then evaluated by
solving two transcendental equations simultaneously. Simplified
expressions for the buckling strengths were finally obtained using a
regression analysis.

Explicit expressions for the local buckling strengths of flange
and web panels of box and I-section profiles were reported in Refs.
[20,21], respectively. In particular, an equation for the local buckling
of web panels undergoing non-uniform normal stresses and elas-
tically restrained along the unloaded edges was given in Ref. [20],
seemingly for the first time. Other explicit expressions for web and
flange panels of different FRP structural shapes were derived in Ref.
[22], whereas in Ref. [23] the explicit solution to the eigenvalue
problem for a composite plate in uniaxial compression with all four
edges elastically restrained was reported, followed by an applica-
tion to honeycomb sandwich structures.

Currently, the best compromise between accuracy and
simplicity, and thus practicality in design, is probably represented
by the closed-form local buckling expressions for orthotropic plates
derived by Kollar in Ref. [24] by combining the buckling loads of
plates without bending stiffness, without torsional stiffness and
Huber-orthotropic plates. Following the method outlined by Bleich
[25] for steel profiles, these expressions, which take account of the
rotational restraint offered by adjacent wall segments, were then
applied in Ref. [26] to the local buckling analysis of thin-walled FRP
columns and beams.

Kollar's formulation was adopted by the Italian Design Guide
CNR DT 205/2007 [27]. With regard to the local flange buckling of I-
section beams, an interesting sensitivity analysis of Kollar's equa-
tion was presented in Refs. [28,29], where it was shown that this
equation correlates significantly better with the experimental re-
sults than those that assume that the half-flanges are simply sup-
ported in correspondence with the web—flange junction.
Comments on the need to take account of the elastic restraint at the
web—flange junction and on the advantages of using Kollar's
formulation were reported in Ref. [30].

2.2. Analysis of plate assemblies

An approach alternative to that described above consists in
applying a variational formulation to the whole thin-walled profile
and then minimizing the resulting functional.

Following the work of Bulson [31] on isotropic thin-walled
profiles, Zureick and Shih [32] studied the local buckling in FRP
beams and columns and deduced the governing stability equations
for box and I-section members as special cases. In their proposal,
the authors assumed that all plates have the same orthotropic
material properties.

In Ref. [33], the case of composite I-sections under pure
compression was analyzed with regard to both initial buckling and
post-buckling, and a numerical solution to the stability equations
was finally developed.

In Ref. [34], the solution to the general characteristic transcen-
dental buckling equation for FRP profiles subjected to eccentric
compression was obtained numerically (pure bending was regarded
as a particular case). In particular, the actual stress state on the cross-
section was approximated by constant and piecewise constant normal
stress distributions applied to flange and web panels, respectively.
Different properties were considered for web and flanges.

The formulations presented in Refs. [32—34] undoubtedly lead
to very accurate reference solutions to the local buckling problem
for orthotropic profiles, but they are barely applicable for design
purposes. In this context, the development of closed-form expres-
sions would be welcome.

To the authors' knowledge, the only relatively simple closed-
form expressions concerning the local buckling of FRP profiles
studied as a whole (and not by a discrete plate analysis) are those
recently derived in Ref. [35] for box, angle-, I-, and C-shaped sec-
tions using the Rayleigh energy method [36]. The closed-form local
buckling equation for I-sections presented in Ref. [36] was pro-
posed again in Ref. [37]. These expressions, based on the hypothesis
of infinitely long profiles (so as to ignore the influence of the end
effects), are restricted to the case of uniform axial compression and
assume the same thickness and material properties for all plates
comprising the column.

3. Motivation for the study

Kollar's equation [26] is the most widely used expression for the
local (flange) buckling resistance of PFRP beams in bending.
McCarthy [28] and McCarthy and Bank [29] showed that, in the case
of wide-flange I-section beams, the professional bias for Kollar's
equation, defined as the ratio of the experimentally determined
local buckling strength to the strength predicted by the equation,
takes a mean value of 1.20 and exceeds 1.5 for two of the ten profiles
investigated (see Table 1, where the reciprocals of this ratio are
reported according to a convention more usual in Europe). The test
results included in the study were collected from Ref. [38], where
the profile stiffnesses obtained from coupon tests were also re-
ported. In the case of columns in pure compression, the profes-
sional bias of Kollar's equation is 1.07 [29], indicating that the
overestimation of the local buckling strength is influenced by the
stress distribution on the web.

3.1. Relationship between local buckling moment and bending
moment resistance

The Italian Design Guide [27] recommends that the bending
moment resistance of PFRP beams in pure bending be determined as

Mga = xm(Am)Mioc rd (1)

where MjocRd is the design value of the local buckling moment and

v (M) is a function of non-dimensional slenderness
AM = y/Miocrd/Mrrrd (With Mprra being the design value of the

flexural-torsional buckling moment), which accounts for the
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