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The effects of an inhomogeneous interphase zone on the effective bulk modulus of particulate com-
posites containing large concentrations of inclusions are analyzed. The composite is modeled as a sus-
pension of elastic homogeneous hollow spherical particles in a continuous elastic matrix. An interphase
zone surrounding inclusions where the matrix material has elastic moduli with radial variation that
asymptotically assume a constant value far away from particles is then modeled. The related elastic

problem of a single inclusion in a finite matrix subjected to a spherically symmetric load is considered
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and a closed-form solution in terms of hypergeometric functions is determined. This analytical solution is
then employed to derive an explicit expression for the effective bulk modulus. A detailed parametric
analysis is finally performed to investigate the influence of the geometric characteristics and elastic
properties of the graded interphase zone for composites containing voids or solid/hollow inclusions.
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1. Introduction

In particulate composites inclusions are dispersed in a homo-
geneous matrix of different material in order to improve the per-
formance of the single original material under specific loading
conditions. In the framework of classical approaches to the math-
ematical modeling of the mechanical behavior of elastic composites
(see e.g. Ref. [2]), these mixtures are treated as being macroscopi-
cally homogeneous with effective properties which depend on the
elastic properties of all phases of the composite and on the shape,
distribution and volume fraction of inclusions.

Predictions of such effective elastic moduli have mostly been
derived assuming matrix and inclusions perfectly bonded across a
well-defined interface at which the elastic moduli vary sharply
from those of the inclusions to those of the matrix. However, in
practice, due to manufacturing processes, a transition zone around
the inclusions can form. The elastic properties of such a transition
zone are usually a combination of those in the inclusions and in the
matrix which can extend over a large area so affecting strongly the
macroscopic behavior of the composite material. Nanoparticle
reinforced materials, as well as syntactic foams containing hollow
inclusions, are examples of particulate composites in which the
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thickness of the transition zone is comparable with the inclusion
characteristic size (see e.g. Refs. [8,9,11,14]). In this case, the above
assumption of sharp interface is not adequate and an interphase
zone with suitable elastic moduli is required to be included in the
constitutive model.

A number of studies have dealt with modeling the interphase
zone in predicting the overall moduli of composite materials. The
interphase zone is treated as a distinct phase from those of in-
clusions and matrix and assumed either homogeneous with con-
stant elastic moduli (see e.g. Ref. [4]) or inhomogeneous with
changing properties. With reference to particulate composites
containing spherical inclusions, Lutz and Zimmerman [7] assumed
that the interphase elastic moduli vary continuously throughout
the entire region outside of the inclusion according to a power law.
They employed the series solution so derived to predict the effec-
tive bulk modulus for small to accurate values of inclusion con-
centration. More recently, Sburlati and Cianci [13] derived a closed-
form solution in terms of hypergeometric functions to the problem
of hydrostatic loading of an infinite elastic matrix containing a
hollow spherical inclusion, surrounded by an interphase zone with
elastic properties varying in radial direction. The interface between
inclusion and interphase is still distinct, while the interface be-
tween interphase and matrix is not sharply defined: namely, the
elastic properties of the interphase vary according to a power law
and asymptotically approach the matrix elastic properties. On the
basis of standard energy considerations, this solution is employed
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also to derive the effective bulk modulus of a composite material
containing a dilute dispersion of such inclusions with interphase
(see e.g. Ref. [2]).

The objective of this paper is to analyze the effects of an inho-
mogeneous interphase zone on the effective bulk modulus of par-
ticulate composites containing large concentrations of inclusions
and perform a detailed parametric analysis to better understand
the effects of the interphase zone on the elastic properties of the
composite.

To this end, using the solution method adopted in Sburlati and
Cianci [13], in Section 2 the geometrical model of a single inclusion
in a finite graded matrix subjected to a spherically symmetric load
is presented and the related analytical solution determined in
closed-form. Section 3 lays out the procedure for predicting the
effective bulk modulus for finite volume fractions of inclusions.
Some numerical examples are shown in Section 4 for solid in-
clusions and in Section 5 for hollow inclusions. Finally, Section 6
concludes the paper with a final discussion on the results
presented.

2. Single inclusion problem under hydrostatic stress

The geometric model here considered is shown in Fig. 1. A
hollow spherical inclusion of inner radius a and outer radius b is
embedded in a matrix phase (straightforwardly, a = 0 corresponds
to the particular case of solid inclusion and a = b to the case of void).
The inclusion is made of a homogeneous isotropic material of Lame
moduli 4; and g;. The inclusion is enclosed in a concentric shell of
the matrix material having outer radius R. Following Lutz and
Zimmerman [7] and Sburlati and Cianci [13], in order to model an
interphase zone surrounding the inclusion, the matrix material is
assumed isotropic but graded in radial direction with Lame moduli
A and p which vary according to the same following power law.
Thus, with reference to a spherical coordinate system, we have

A1) =Am + (hip — Am) (g)ﬂ =m +7(2)6,
8

u(r) = piy + (mp - um) (?)6 = m + ﬁ(g) ;

where: b < r < R measures the distance from the interface with the
inclusion; A and uj, are the values of the Lamé moduli at the
interface with the inclusion; A, and u, are the asymptotic values of
the Lame moduli far away from the inclusion; parameter § > 0
controls the moduli variation in the matrix. Ap # A and wjp # ;i
correspond to a sharp interface with the inclusion. A stiffer or more
compliant interphase than the matrix can be modeled suitably

(2.1)

homogeneous
inclusion

Fig. 1. Geometric model.

choosing, respectively, Aip > Am, ftip > fm OT Aip < Am, fip < fm; for
Aip = Am and pjp = upy the problem reduces to that of a single in-
clusion bonded to a homogeneous matrix. Moreover, larger values
of ¢ correspond to more localized interphases. On the other hand,
being the interphase zone part of the matrix, no distinct interface
with the matrix exists. As a consequence, the interphase thickness,
say t, depends on § and cannot be regarded as an independent
geometric parameter of the model. A criterion to relate t and § is
discussed in Section 3. Finally, recalling that for isotropic materials
Lame moduli are related to bulk modulus as

k= %(2u +32), (2.2)

from Eq. (2.1) it follows that also the bulk modulus of the graded
matrix material varies according to the power law

g

k(r) = km + (kip — km) (g)ﬁ = km + E(g) , (2.3)

where: k;p is the value of the bulk modulus at the interface with the
inclusion, whereas k;;, is the asymptotic value far away from the
inclusion.

Since it is of interest here to determine the effective bulk
modulus, the single sphere model of Fig. 1 is considered subjected
to a hydrostatic pressure p on its outer boundary (r=R > b + t). In
this way, the boundary and continuity conditions are

o’ (@) =0, o™ (R) = —p
and (2.4)

u®(by = u™(b), o (b) = o™ (b),

where aﬁk) and u™® are the radial stress and displacement in the
inclusion (k = i) or in the matrix (k = m).

Sburlati and Cianci [13] posed and solved analytically the
mathematical problem of the single inclusion in an infinite
graded matrix (R— o). Their exact solution was expressed in
terms of hypergeometric functions and explicit expressions for a
hollow inclusion surrounded by an inhomogeneous interphase
were derived and also specialized to the case of solid inclusion.
On the basis of standard energy considerations, this explicit so-
lution was then employed to derive a formula, approximated to
the first order in inclusion volume fraction, of the effective bulk
modulus for a composite containing a dispersion of such non-
interacting inclusions which takes into account the effect of an
interphase zone.

It is worthwhile to note that the same solution procedure can be
adopted and suitably extended to solve the single sphere problem
having finite R here under consideration. In this way, the radial
displacement and stresses in the graded matrix assume the form

u™ () = %@1 () + Aar®s (1), (2.5)

and

o) = 2151) + Aofa(r) and of(r) = S (r) + Afa(r),
(2.6)

where
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