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a b s t r a c t

In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end
electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback
network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate
of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a
shortened pulse-width is desirable for high-throughput applications. For both objectives, digital de-
convolution of the exponential decay is convenient. With a general method and the signals of our custom
charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an
amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design
methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with
respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to
a step-like output signal that is exploited by a forward-looking pulse processing.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

A gamma-ray detector system based on a semiconductor detector
such as cadmium zinc telluride (CdZnTe, CZT) usually consists of the
detector crystal, the analog readout electronics for the amplification of
the detector signal, and a pulse processing unit. Nowadays, the pulse
processing is mainly integrated by an application-specific integrated
circuit or by a digital circuit in a field-programmable gate array (FPGA).
As we recently showed [1], the front-end electronics can be appro-
priately implemented with a charge-sensitive amplifier with a con-
tinuous reset through an RC feedback circuit. This type of amplifier
discharges the integrated detector current from the feedback capacitor
Cwith the resistor R. Thus the typical signal shapewith an exponential
decay is seen at the output of the charge-sensitive amplifier. A well-
known problem of the charge-sensitive amplifier with RC feedback is
the ballistic deficit. This is caused by continuous discharge of the
feedback capacitor, even though the current of the detector is in-
tegrated. If the ratio of the RC time constant over the integration time
decreases, the ballistic deficit dominates the measured peak amplitude
[1]. To eliminate this effect and to reconstruct the initial charge by a

deconvolution of the exponential decay, Stein et al. presented the
Moving Window Deconvolution (MWD) [2–6]. Later, Jordanov et al.
[7–9] described the same approach [6]. However, both algorithms are
derived by an analysis of the exponential decay in the time domain. As
a result, a deconvolution of the exponential decay in the discrete-time
domain is described by [6]
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where [ ]y n is the deconvolution of the signal [ ]x n , which is the value
of the continuous signal x(t) at the discrete time =t nT with the

sampling interval T. The value of k is set to ( − ′)k1 , where ′ = τ
−

k e
T
is

“the decay constant of the preamplifier transfer function for one
sampling interval” [2]. The authors proposed an alternative value =

τ
k T

in [6] assuming τ⪢T . Both parameters for Eq. (1) transform the ex-
ponential decay of the signal into a step-like signal, as shown in Fig. 1.

The discrete-time signal [ ]x n shown in Fig. 1 corresponds to an
output signal of an ideal charge-sensitive amplifier with a feed-
back resistor R and feedback capacitance C. For a rectangular
shaped input current pulse with amplitude I, where the current
flows in the time interval from ta to tb, the continuous-time output
signal x(t) of the amplifier is calculated by
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Here θ ( )t is the Heaviside step function, and > >t t 0b a . Regarding
Stein's approach for the MWD, the presented deconvolution is
calculated by the recursive representation of Eq. (1), which is de-
rived by
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According to the time-shifting property of the z-transformation
[11]
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Eq. (6) can be rewritten as
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It is obvious that Eq. (8) is an equivalent of the generalized transfer
function of an infinite impulse response (IIR) filter, which is de-
fined as [11]

( ) =
∑

− ∑ ( )
=

−

=
−

H z
b z

a z1 9

k
M

k
k

k
N

k
k

0

1

For further clarification, the fundamental operation of the pulse sha-
pers described by Stein et al. [2] or by Jordanov et al. [7] is a decon-
volution of the transfer function of the amplifier and can be substituted
by an IIR filter. Recently, Jordanov presented an unfolding-synthesis
technique [10] that also demands an accurate deconvolution of the
amplifier transfer function. Both constructed their digital algorithms
intuitively by an extensive analysis of the signals in the time domain.
By doing so, they neglected the established design methods for digital
filters. Consequently, we will show a further analysis of the amplifier
transfer function in the s-domain (frequency domain of continuous-

time signals) and design the corresponding digital filter for the de-
convolution in the z-domain (equivalent frequency domain of discrete-
time signals). Finally, we will verify our algorithms with the signals of a
CZT detector in conjunction with a charge-sensitive amplifier.

2. Discrete-time inverse amplifier transfer function

The charge-to-voltage transfer function of an ideal charge-
sensitive amplifier with an RC feedback network and the voltage vO

at its output is given by [1]
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By normalizing the charge Q to the feedback capacitance C with
= vQ

C Q , the transfer function HQ becomes
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where τ = RC is the characteristic time constant of the charge-
sensitive amplifier. The transfer function is identical to that of a
first-order high-pass filter. Therefore, the signal seen at the output
of the amplifier is a convolution of the charge input signal and a
high-pass filter. Moreover, as we want to reconstruct the input
signal, the deconvolution of the high-pass filter is realized with
the inverse transfer function of the amplifier. A deconvolution in
the discrete-time domain requires an adequate approximation of

−HQ
1 in the z-domain. Because the design methods for discrete-time

filters that transform continuous-time filters are numerous, we
will focus our investigations on a set of established methods and
will test the accuracy of the transformation from the s-plane to the
z-plane. At first, with the corresponding Laplace-transformation of
the difference quotient of the continuous-time signal x(t)
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the equivalent difference quotient for the discrete-time signal
x(nT) is
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By using Eqs. (7) and (13), the transformation of the s-domain to
the z-domain is therefore derived by
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which is referred to as the forward difference method. In the same
way, but by setting the difference quotient to ( ) − ( − )x t x t h

h
, the cor-

responding backward difference is defined by
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It is clear that these design methods replace the continuous-time
differentials with a discrete-time difference. The exact relation of s
and z in the context of the z-transformation is given by

= ⟺ = ( ) ( )z s
T
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ln , 16
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which cannot be used for the expression of a discrete series of
samples with respect to Eq. (7). Therefore, another substitution of
s is derived by solving the differential equation corresponding to
H(s) by the approximation of an integral with the trapezoidal rule
[11,12]. A replacement of s with

Fig. 1. A sampled output signal [ ]x n of an amplifier with a typical exponential
decay at sampling interval T (simulated). The decay has the time constant τ = 20 T ,
and the parameter k of the deconvolution is = − τ

−
k 1 e

T
. This results in a step-like

signal [ ]y n with a corrected amplitude due to the ballistic deficit.
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