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a b s t r a c t

Asymmetry measurements are common in collider experiments and can sensitively probe particle
properties. Typically, data can only be measured in a finite region covered by the detector, so an ex-
trapolation from the visible asymmetry to the inclusive asymmetry is necessary. Often a constant mul-
tiplicative factor is advantageous for the extrapolation and this factor can be readily determined using
simulation methods. However, there is a potential, avoidable pitfall involved in the determination of this
factor when the asymmetry in the simulated data sample is small. We find that to obtain a reliable
estimate of the extrapolation factor, the number of simulated events required rises as the inverse square
of the simulated asymmetry; this can mean that an unexpectedly large sample size is required when
determining the extrapolation factor.

& 2016 Published by Elsevier B.V.

1. Introduction

Measurements of production asymmetries have a long history
at colliders [1–21], so examination of the experimental techniques
used to make them is important. Most measurements are per-
formed by first measuring the asymmetry within a restricted
geometric region—the region covered by the detector—and then
extrapolating to the inclusive region. In some cases an extrapola-
tion based on a constant multiplicative factor is advantageous, but
a potential pitfall exists in estimating the multiplicative factor via
simulations. Because this sort of technique is widely applicable to
experimental measurements, we explore it in detail here and
identify where and why this potential pitfall arises.

In general an asymmetry is defined with the partial cross sec-
tions, s1 and s2, over two complementary kinematic or geometric
regions,
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We can simplify our discussion by considering the regions defined
by a single variable, x, while integrating over all other variables. In
the case where x represents the pseudorapidity of a particle, which
is directly related to the angle θ between an outgoing particle and
the beam line, this produces a forward–backward asymmetry, for
example, for use in top-quark-pair production at the Fermilab

Tevatron [1–6]. We define Ainclusive using
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However, when the entire range of x is not accessible due to ki-
nematic constraints and/or the geometry of the detector, we can
only measure

∫

∫

σ σ

σ σ

=

= ( )−

dx
d
dx

dx
d
dx

, and

, 3

x

x

1
visible

0

2
visible

0

visible

visible

which define the visible asymmetry, Avisible.
There are multiple ways to extrapolate from Avisible to Ainclusive.

The two simplest methods for doing this are employing an ad-
ditive correction factor ( = −C A Ainclusive visible) [22,23] or, a method
that is commonly used, employing a multiplicative correction
factor
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where each are typically estimated using Monte Carlo (MC) si-
mulations [1,2,24]. Each is applicable in different physical sce-
narios. While more sophisticated correction methods can be, and
in some cases must be, employed [4–21,25], the multiplicative
correction method has been very successful for ¯tt leptonic
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asymmetry measurements, as the correction factor appears not to
vary significantly with the inclusive asymmetry [24]. In this paper,
we explore a simple example in which this condition holds, but
use it to identify a pitfall in the estimation of the correction factor
and explore ways in which this pitfall may be avoided by future
analyses.

For illustrative purposes, we consider a simplified model based
on the measurement of the top leptonic forward–backward
asymmetry at the Fermilab Tevatron [1–6]. It has been shown both
that the differential cross section of leptons as a function of
pseudorapidity can be well approximated as the sum of two
Gaussian distributions with a common mean, and that the simple
multiplicative extrapolation technique works in this case [24]. For
the purposes of this study, we take the differential cross section

σd dx/ to be the simpler single-Gaussian distribution with unit
width and a non-zero mean, μ. As shown in Appendix A there is an
approximately linear relationship between the asymmetry and μ
for small values of μ; we can refer to the behavior of μ and the
asymmetry interchangeably. This simple model provides a foun-
dation to understand the general behavior of multiplicative
asymmetry extrapolation methods.

A potential pitfall occurs when estimating the correction factor
in Eq. (4) using MC samples with small asymmetries. Under cer-
tain quantifiable conditions, simulations can produce values of R
that are misleading and far from the correct value. To make the
discussion concrete, we pick a visible region for our single Gaus-
sian distribution of − < <x1.5 1.5, which gives the visible and
inclusive regions as shown in Fig. 1, with the dashed lines in-
dicating the boundaries. Given this particular description, to an
excellent degree of approximation we find = ±R 0.7795 0.0005, as
shown in Appendix A. Since analyses typically have more com-
plicated distributions and use MC methods to estimate R, we begin
this study by using MC samples to determine the distribution of
the multiplicative factor, and illustrate the pitfalls when the si-
mulated Ainclusive goes to zero. We then compare this result with a
closed form statistical solution to gain a better understanding of
why this pitfall arises.

2. Monte Carlo study

The most common method to determine the multiplicative
correction factor is to simulate events according to a calculated

differential cross section σd
dx
, and calculate the correction factor R

from the simulated events. We mimic this procedure by generating
sets of random numbers according to a simplified differential cross
section that takes the form of a Gaussian function with unit width
and a mean μ. Each random number represents an event, each set
of random numbers is a pseudo-experiment (PE), and the number
of events in each PE is denoted by N. From each PE, we can
measure both Avisible and Ainclusive, and therefore R. Distributions of
these three values can then be generated with an ensemble of PEs;
the number of PEs used to generate these distributions is denoted
by NPE. For example, in Fig. 1, we show two examples of differential
cross sections (a single PE) with =N 106 and both μ = 0.0 and
μ = 0.5. In Fig. 2, we show the distributions of Avisible, Ainclusive, and
R for =N 10PE

6, each with =N 106 and μ = 0.1. This value of μ is
chosen as it corresponds to ≈A 8%inclusive , which is a value we
typically see in ¯tt asymmetry measurements at the Tevatron [1–6].

Since the simulation of a practical differential cross section is
usually computationally expensive, the common practice is to si-
mulate one PE with a modest N, usually on the order of 106, and
calculate R from it. In this analysis, the distribution of R from an
ensemble of PEs reveals the quality of the estimation of R from a
single PE. We note that in Fig. 2(c) the variation in R is small, with
a width less than 1% of its mean value. With the simplified single-
Gaussian differential cross section and the visible region specified
above, R¼0.7798 which is consistent with the calculation in Ap-
pendix A.

We next study the quality of the estimation of R as we vary the
two factors, μ and N, which have significant impact on potential
measurements: we examine what happens both in the limit of
small simulation sample size and as μ → 0 (or equivalently, as the
asymmetry approaches zero). Specifically, we aim to understand
whether the estimation of R is correct and what the uncertainty on
that estimation is, the sample size needed to obtain a small un-
certainty, and whether the value of R is constant for all values of μ
when it is measured with a large sample size.

For μ = 0.1, R is well determined even with a fairly small value
of N. Fig. 3 shows distributions of R for =N 10PE

6 with =N 105 and
=N 103. As N decreases, the R distribution widens and becomes

much less Gaussian, and the peak of the distribution shifts. Thus,
estimating the value of R from a single PE (as is typically done in
realistic scenarios with more complicated differential cross sec-
tions) quickly leads to incorrect results. That is, there is a mini-
mum allowable N, above which we can be confident in the esti-
mation of R, and below which the estimation of R is no longer
reliable, hence introducing a significant and asymmetric sys-
tematic uncertainty to the inclusive asymmetry measurement.
This issue becomes even more pronounced as μ, and thus the
asymmetry, approaches 0.

As we note in the next section, the statistics behind this effect
has been studied in great detail in the literature, and we see that
the R distribution begins to approximate a Cauchy distribution
[26]. To explain this, we note that the Cauchy distribution is the
distribution of the ratio of two Gaussian random variables when
the mean of the denominator is zero. When the mean of the
Gaussian in the denominator is far enough away from zero, the
distribution is Gaussian, and in the limit that it approaches zero,
the distribution approaches the Cauchy distribution. The usual
measurements of mean and standard deviation are not expected
to give accurate and reliable results; indeed, for a true Cauchy
distribution these two values are not defined.

To determine how many events we need to be able to make a
reliable estimation of R, we define the fraction of PEs with <R 0.5:
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Fig. 1. Two Gaussian distributions with unit width, with μ = 0.0 and μ = 0.5. The
dashed lines at �1.5 and 1.5 indicate the boundaries for the visible region we
consider here.
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