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a b s t r a c t

A numerical investigation on the spatiotemporal evolution of an electron beam, externally injected in a
plasma in the presence of a plasma wake field, is carried out. The latter is driven by an ultra-short
relativistic axially-symmetric femtosecond electron bunch. We first derive a novel Poisson-like equation
for the wake potential where the driving term is the ultra-short bunch density, taking suitably into
account the interplay between the sharpness and high energy of the bunch. Then, we show that a
channel is formed longitudinally, through the externally injected beam while experiencing the effects of
the bunch-driven plasma wake field, within the context of thermal wave model. The formation of the
channel seems to be a final stage of the 3D evolution of the beam. This involves the appearance of small
filaments and bubbles around the longitudinal axis. The bubbles coalesce forming a relatively stable
axially-symmetric hollow beam structure.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are going to investigate the physical condi-
tions to generate the hollow structure by means of a plasma wake
field (PWF) excitation mechanism similar to the laser wake field
(LWF) excitation. We use a relativistic high energy ultra-short
electron bunch as a driver, whose time duration ranges from sub-
picoseconds to femtoseconds, and a moderately long charged
particle beam as a driven system, whose time duration ranges
from ( − )10 103 2 femtoseconds. The hollow structure results from
the interaction of the PWF generated by the ultra-short bunch
with the driven beam. Here, we study numerically the evolution of
the driven beam within the framework of the Thermal Wave
Model (TWM) for charged particle beam propagation [1–6], where
a Schrödinger-like equation governs the longitudinal spatio-
temporal evolution of a complex wave function, whose squared
modulus is proportional to the beam density. The adopted model
equations constitute a pair of coupled partial differential equations
comprising a Poisson-like equation and the Schrödinger-like
equation, constructed in the following way.

We first consider a cylindrically symmetric relativistic ultra-

short bunch moving along the z-axis at the velocity β β^ ( ≃ )cz 1 . We
denote with ρ ( )z r t, ,b the number density of the bunch where r is
the cylindrical radial coordinate and t is the time coordinate. In
order to get an equation for the wake potential energy, we perform
the coordinate transformation ξ β τ= − ′ = =z ct r r ct, , . Under
this transformation the linearized Lorentz–Maxwell fluid equa-
tions of the “bunchþsystem” can be reduced to the following
Poisson-like equation:
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where ξ Ω ξ γ( ) = − ( )U r q r m c, , /w 0 0
2 is the dimensionless wake

potential energy, Ω β ϕ= ( − )A z1 1 is the dimensional wake poten-
tial, A1z is the longitudinal component of the perturbation of
vector potential A1, ϕ1 is the perturbations of scaler potential ϕ,
respectively. Also, γ0 is the leading order term of the relativistic
factor γ β= ( − )−1 2 1/2 and = −q e is the charge of the bunch. To
obtain Eq. (1) we first observed that ∇ = ∂ ∂ = ∂ ∂ ′⊥ r r/ / and further
assumed that, on the fast time scale, τ∂ ∂ =/ 0, which imposes the
quasi-electrostatic approximation. Therefore, Eq. (1) relates

ξ( )U r,w to ρ ξ( )r,b during the early times (note that we have, for
simplicity, replaced ′r by r). Note also that, we have made the
longitudinal and radial variables dimensionless with respect to the
plasma wave number ω≡k c/pe pe , viz., ξ ξ→ kpe and →r k rpe ,
where ω π= ( )n e m4 /pe 0

2
0

1/2 is the electron plasma frequency.
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The Poisson-like equation is a partial differential equation to
describe the collective PWF excitation mechanism relating the
wake potential and the bunch density. It has been used to describe
the PWF theory for an unmagnetized plasma [7]. It has also been
extended to describe the PWF excitation mechanism for a mag-
netized plasma [3].

Eq. (1) differs from the standard one of PWF theory [7] and
contains second and fourth order derivatives with respect to ξ. To
obtain this equation, we have taken into account carefully the
longitudinal sharpness of the bunch compared to its high energy
conditions i.e., value of γ0. Note that, our assumption of ultrashort
electron bunch leads to the condition that the bunch length is
much less than the plasma wavelength, i.e., σ ⪡k 1pe z , where sz is
the bunch length. Therefore, we are looking forward to study a
regime where the ultra sharpness of the bunch length ( ξ∂ ∂/ )
compensates the smallness of γ1/ 0 in such a way that the term

γ ξ(∂ ∂ )1/ /0 in Eq. (1) could not be neglected and be comparable to
1. This leads to the condition γ σ≈ ⪡k1/ 1pe z0 . To study the behavior
of the wake potential from Eq. (1), this condition must be satisfied
for any set of parameters.

We assume that a second cylindrically symmetric beam (i.e.,
witness or driven charged-particle beam), is launched toward the
plasma wake along z-axis to experience the effects of the PWF
produced by the driving bunch (i.e., ultra-short bunch). Here, the
longitudinal spatiotemporal evolution of the driven beam man-
ifests on longer time scales. In quantum-like domain (TWM), it is
provided by the following Schrödinger-like equation, in plasma [1–
5,9] as well as in conventional accelerators [8,10,11], beyond the
quasi-electrostatic assumption, viz.,
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where ψ ξ τ( )r, , is the complex wave function called beam wave
function and ϵ is the thermal beam emittance. Note that, we have
made all the variables dimensionless with respect to kpe, viz.,
τ τ→ kpe , ξ ξ→ kpe , →r k rpe , ϵ → ϵkpe, and ψ ψ= k/ pe

3/2. Note also that
ρ ξ τ ψ ξ τ′( ) = | ( )|r N r, , , ,b

2, where N is the total number of driven
beam particles.

The pair of Poisson-like and Schrödinger-like equation, i.e., Eqs.
(1) and (2), respectively, is analogous to the Zakharov-like coupled
system of equations [12] (and references therein). It describes the
spatiotemporal evolution of the driven beam while interacting
with the plasma wake that has been generated by the ultra-short
driving bunch. In the next section, we will present the numerical
results of this coupled system of equations.

2. Numerical results

As we have already pointed out, Eq. (1) that governs the spa-
tiotemporal evolution of the wake potential has been numerically
integrated by assuming the Gaussian distribution in cylindrical

symmetry, viz.,
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, where sz and σ⊥

are the bunch length and spot size of the driving bunch, respec-
tively. The spatial distribution of the dimensionless wake potential
energy ξ( )U r,w [normalized by γ( )n n/b 0 ] is plotted as a function of
dimensionless ξ and r.

Fig. 1 shows the longitudinal evolution of the normalized wake
potential energy Uw and the corresponding longitudinal and radial
gradients ∇ξ Uw and ∇ Ur w respectively, in the vicinity of the
longitudinal axis ( → )r 0 . The corresponding values of the bunch
length and spot size (both normalized by kpe) are considered as
σ σ→ ≃ ( ≃ μ )−k 10 0.1 mz pe z

2 and σ σ→ ≃ ( ≃ μ )⊥ ⊥k 5.5 50 mpe , re-
spectively. The normalization factor for Uw is γ ≃ −n n/ 10b 0

7

( γ ≃ 100
3, ≃ −n 10 cm0

17 3, and ≃ −n 10 cmb
14 3). All the parameters

have been chosen in such a way to satisfy the condition
γ σ≈ ⪡k1/ 1pe z0 . The wake potential energy ξ( )U , 0w (blue line) and

the corresponding longitudinal and radial gradients, i.e.,
ξ∇ [ ( )]ξ U , 0w (orange line) and ξ∇ [ ( )]U , 0r w (green line), respectively,

exhibit regular oscillations along ξ. The longitudinal gradient is
much greater than the radial one.

Next, for the driven beam, we chose an initial normalized di-
mensionless Gaussian profile similar to the driving bunch but
longitudinally off-set by the normalized length ξ ξ¯ → ¯kpe at τ = 0,

of the form
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2 , where σ′z

and σ′⊥ are the beam length and spot size, respectively, that are
normalized by kpe, viz., σ σ′ → ′kz pe z and σ σ′ → ′⊥ ⊥kpe . For this initial
beam profile, we numerically solve the Schrödinger-like Eq. (2), in
which Uw is the output of numerical solution of Eq. (1). For the
driven beam, we chose σ′ = 40z and σ′ =⊥ 1000 with an offset ξ̄ = 80
and ϵ = −10 3. Note that, we have chosen the normalized di-
mensionless beam length σ′z in such a way that it is comparable to
the wake field wavelength ( ∼ μ )100 m . In these conditions, we can
assume that the self-interaction is negligible. Therefore, it is jus-
tified that in Eq. (2), we did not take into account the interaction of
the driven beam on itself (self-interaction). In the next sections,
we analyse the spatiotemporal evolution of the driven beam
density ρ ξ τ ψ ξ τ′( ) = | ( )|r N r, , , ,b

2 in different dimensions, i.e., 1D,
2D, and 3D, respectively.

2.1. Density oscillations in 1D

Figs. 2 and 3 show the longitudinal oscillations of ρ ξ τ′( )r, ,b as a
function of ξ at given r and τ, and radial oscillations as a function of r
at given ξ and τ, respectively, for σ σ′ = ′ =⊥40, 1000z with an initial
Gaussian profile. The longitudinal oscillations are pronounced at the
radial origin ( ≈ )r 0 and start to decrease as r increases, as shown in
Fig. 2. Note that, with increasing τ, starting from r¼0 till 140 we
observe decrements of the total particles through oscillations whilst
between r¼140 and r¼280 we observe increment. The profiles at
r¼140 and r¼280 for any τ overlap to reconstitute the initial con-
dition. For a fixed r, the longitudinal density oscillations with re-
spect to ξ are rapid in early τ and then reduce as τ increases. The
radial oscillations of ρ ξ τ′( )r, ,b for fixed ξ and τ are clearly visible in
Fig. 3. We have chosen the values of ξ in such a way that: the first
ξ( = − )120 is located in one σ′z left from the Gaussian pick; the
second ξ( = − )80 is located at the Gaussian pick; finally, the third

Fig. 1. Longitudinal evolution of the normalized wake potential energy Uw (blue
curve) and the corresponding longitudinal and radial gradients ∇ξ Uw (orange
curve) and ∇ Ur w (green curve) respectively, in the vicinity of the longitudinal axis
( →r 0) for dimensionless bunch length σ σ→ ≃ ( ≃ μ )−k 10 0.1 mz pe z

2 and spot size
σ σ→ ≃ ( ≃ μ )⊥ ⊥k 5.5 50 mpe . (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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