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a b s t r a c t

A new concept of equivalent inhomogeneity is proposed to facilitate analysis of effective properties of
composites with interphases using techniques devised for problems without interphases. The basic idea
to replace the inhomogeneity and its interphase by a single equivalent inhomogeneity (combining
properties of both) is akin to previously proposed developments but the criterion of equivalency is
entirely different. It is based on Hill's energy equivalence principle, and is illustrated considering
spherical inhomogeneity with GurtineMurdoch surface model and spring layer model of interphases.
The validity of the suggested technique is documented by remarkably good agreement with the best
available solutions for composites containing spherical inhomogeneities with spring layer model of
interphase.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Influence of interphases on the overall (effective) properties of
composites may be significant and its analytical quantification has
been an increasingly popular topic of research. Importance of such
research stems from the fact that e as a result of changes in the
interatomic interactions on the boundary between different ma-
terials, combined with specifics of manufacturing processes e in-
terphases are present in all composite materials. Properties of those
interphases vary, depending on the materials involved, and various
models have been proposed to capture their influence on the
overall behavior of composites e.g. Refs. [3,7,13,19]. Typically they
are specified by formulas defining a difference (jump) in displace-
ments and/or tractions across the interphase, whose thickness may
be either finite or vanishingly small.

If the influence of interphases is anticipated to be small, they
may be completely eliminated from analysis. This case is often
referred to as perfect interface (or perfect bonding) and it is associ-
ated with continuity of both displacements and tractions. Analysis
of composites with perfectly bonded constituents is easier than
those with interphases, but even in this case the complexity is very

high so that only approximate, e.g. Ref. [15], or numerical, e.g. Ref.
[30], methods can be employed. They are described in many pub-
lications and most of them are summarized in a number of books
[6,21,23,24,29,33], among others. Some of the approximate solu-
tions are presented in closed-forms, which are their very attractive
feature, and a feature exploited subsequently in this work. The
numerical solutions, on the other hand, are often formally exact
and provide results that are very useful as benchmarks when
developing approximate approaches. Their main drawback is that
they do not reveal any functional dependence of the results on the
parameters describing the problem. A common disadvantage of the
existing approximate and numerical approaches is that most of
them need to be restricted to simple shapes of the composite's
constituents e overwhelmingly to spheres in three-dimensional
problems, very rarely spheroids or ellipsoids.

Presence of interphases makes the existing approaches used in
analysis of composites more tedious thanwhen the interphases are
absent [1,2,4,5,7e10,12,18,19,26,27,31], among others. In addition,
some of the existing methods are developed specifically for prob-
lems without interphases, and their extension to problems with
existing interphase models is not presently available. With that in
mind, the main task undertaken in this work is to present a general
approach of converting problems with interphases to problems
without interphases (or with perfect interfaces) that can be solved
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using any of the existing approaches, analytical or numerical.
Specifically, the main topic here is to introduce a general energy-
based approach (Hill's principle, cf. [20]), to find properties of the
so-called equivalent inhomogeneity that would incorporate both
the properties of the original inhomogeneity and of the interphase.
So defined equivalent inhomogeneity is then perfectly bonded to
the matrix and any method developed to analyze composites
without interphases can be used to investigate influence of
interphases.

There were number prior very different approaches to define
equivalent inhomogeneities. Hashin [17,18], in application of his
composite sphere assemblage to analysis of the effective bulk
modulus, introduced a similar concept and discussed its possible
extension to multi-layer systems. That idea has been subsequently
followed within the so-called differential scheme [31,32]. In this
approach layers of infinitesimal thickness were successively added
to the original spherical inhomogeneity to form an interphase with
properties varying across its thickness. With addition of each layer
the properties of the system were defined either by the Mor-
ieTanaka scheme or Hashin e Strickmann upper bound estimate
[16]. Equivalent inhomogeneities have also been presented in the
contributions of Duan [9,10] and Gu [12] in which two different
models of interphases were considered: the GurtineMurdoch
material surface model and the spring layer model. Their defini-
tions were identical and based on equality of the energy changes
(introduced in Ref. [11]) caused by insertion of a spherical in-
homogeneity together with its interphase and the changes caused
by insertion of the equivalent inhomogeneity. While the bulk
modulus of the equivalent inhomogeneity obtained that way was
identical as that of Hashin [18] and depended only on the proper-
ties of the original inhomogeneity and of the interphase, its shear
modulus, however, turned out to also include the moduli of the
matrix. The formula defining equivalent shear modulus expectedly
reflects the properties of the entire system, not just those of the
inhomogeneity and its interphase that it is supposed to replace.
Thus, for a specific inhomogeneity and its specific interphase, the
criterion adopted by Duan [9,10] and Gu [12] leads to infinite
number of “equivalent inhomogeneities” which seems non-
physical, and it is unlike any of the previously presented equiva-
lent inhomogeneities [18,31].

It is finally noted that all of the previous definitions of equivalent
inhomogeneity very fundamentally rely on the spherical shape of
the inhomogeneities. That is also true about the recent contribution
of the present authors [28], in which equivalent inhomogeneity for
the spring layer model has been defined using exact Lurie's solution
for sphere, [22]. None of those approaches can be reformulated to
cover shapes other than spheres and various models of interphases.
As a result such practically important materials as short fiber
composites, or composites with carbon nanotubes reinforcement in
which interphases have a very pronounced influence, cannot be
analyzed.

The notion of the energy-equivalent inhomogeneity presented
here is conceptually akin to that recently presented in Ref. [27], and
leads to the equivalent properties which do not include properties
of the matrix and which result in remarkable effective properties of
composites. While the approach pursued there was theoretically
applicable to inhomogeneities of arbitrary shapes, it was restricted
only to GurtineMurdoch model of interphases. In the original
version the approach is not flexible enough to account for other
models of interphases, such as the spring layer model. Its gener-
alization presented here is capable to cover not only arbitrary
shapes of inhomogeneities but also a number of different inter-
phase models. Its outline is presented in Section 2. In Section 3
specifics related to two illustrative cases are discussed, one, for
completeness, summarizes the existing results involving

GurtineMurdoch material surface model of the interphase and the
second represents a new application of the proposed approach for
the spring layer model. Some details pertinent to Section 3 are
moved to the Appendices A and B. While the approach presented
here can be used in conjunction with any approach applicable to
analyze materials without interphases, the Method of Conditional
Moments (MCM) [21,25] is used in this work and it is outlined in
Section 4. The MCM is chosen in view of the fact that random
composites are considered in this work and that it is a method
whose original development did not allow for presence of in-
terphases. Numerical results and their discussion are presented in
Section 5, and conclusions are included in Section 6.

2. General formulation of the problem

The main idea of the Energy Equivalent Inhomogeneity (EEI)
consists in using the energy approach to replace the system con-
sisting of the original inhomogeneity and surrounding interphase
of thickness h (with h¼0 as a special case) by a single uniform in-
homogeneity. Various types of interphases may be considered, but
both the interphase and the inhomogeneity are assumed elastic
with their own distinct properties.

To find the properties of the EEI the well-established homoge-
nization approach is followed. It is assumed that the displacements
at the matrix/interphase boundary result from an arbitrary con-
stant overall strain εeq. At equilibrium these displacements cause
the attendant strain fields (or displacement jumps) within the
original inhomogeneity and the interphase, both of which depend
on εeq. The strain energy associated with the equilibrium state of
such system, being the sum of the energies of the original in-
homogeneity and its interphase, is then a quadratic function of εeq.
Equating this energy of the inhomogeneity-interphase system to
the energy of equivalent inhomogeneity [20], whose homogeneous
deformation is arbitrary εeq, yields properties of the equivalent in-
homogeneity in terms of the mechanical and geometrical data
describing the original inhomogeneity and the interphase.

The exact solution of the problem just described is possible only
under very rare circumstances; in many cases it is, however,
possible to analytically obtain an accurate approximate solution.
Given that the interphase is typically thin and that the matrix/
interphase displacements correspond to a constant εeq, it is plau-
sible to assume that the strain field within the original in-
homogeneity will be nearly uniform εsεeq. Thus, it is assumed here
that the original inhomogeneity (of arbitrary shape) undergoes
rigid body motion, described by the unknown displacement vector
u (of an arbitrary reference point O, Fig. 1) and small rotation tensor
u (about that reference point), as well as deformation described by
a constant small strain tensor ε.1 Consequently, the energy equiv-
alence takes the following form

E ¼ 1
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�
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�
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�
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(2.1)

where Veq is the sum of the volumes of the original inhomogeneity
V1 and of the interphase Vi (i.e. volume of equivalent in-
homogeneity), Ei is the strain energy of the interphase, C1 and Ceq

1 Further simplifications are possible in specific situations, for instance for in-
homogeneities with sufficient degree of symmetry u, or even both u and u are
equal to zero.
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