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a b s t r a c t

In this paper, the nonlinear bending behavior of bilayer orthotropic rectangular graphene sheets resting
on a two parameter elastic foundation is studied subjected to uniform transverse loads using the non-
local elasticity theory. The non-local theory consider the small scale effects. Considering the non-local
differential constitutive relations of Eringen theory based on first order shear deformation theory
(FSDT) and using the von-Karman strain field, the nonlinear formulations are derived. Equilibrium partial
differential equations are expressed in terms of generalized displacements and rotations. Because of
nonlinear partial differential equations, if it is not impossible but it is too complicated to find an
analytical solution, so, the differential quadrature method (DQM) that is a high accurate numerical
method is investigated to solve the governing equations. The NewtoneRaphson iterative scheme is
applied to solve the obtained nonlinear algebraic equations system. Different boundary conditions
including clamped, simply supports and free edges are considered. Since there is not any researches
available for nonlinear bending of bilayer rectangular graphene sheets with FSD theory, so considering
the monolayer, the results are compared with available papers. Finally, the small scale effect parameter
due to various types of conditions such as thickness ratio, boundary conditions, stiffness of elastic
foundation, the van der Waals interactions between the layers, nonlinear to linear FSDT analysis and the
differences between non-local and local elasticity theories are investigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, nano structures are used widely such as nanotubes,
nano beams and nano plates. The graphene sheets are kind of nano
materials which are formed in hexagonal shape by covalent bonds
between carbon atoms. Especial properties of graphene sheets such
as high strength, the low ratio of weight to area unit and extraor-
dinary electrical properties, attracted many researchers to consider
this topic as their major activities [1e3]. It is studied the possibility
of using graphene in cellular photographing [4], the mass sensors
and monitoring of atomic dusts [5], composite materials [6,7], the
gas detectors [8] and in microelectronic and biomechanics sets [9].
The bending strength of graphene sheet is low, so using multilayers
of graphene sheets causes to improve this weakness. In order to
make multilayers of graphene sheet, several single layers of

graphene are set on each other by weak van der Waals bond be-
tween the surface atoms [10].

There are different methods to analyze the nano structures [11].
Except experimental methods, it can be mentioned atomic
modeling [12], combination of atomic modeling and continuum
mechanics [13] and continuum mechanics [14]. Inasmuch as the
control of experimental and atomic modeling is difficult and
expensive in computations; consequently, the continuum me-
chanics method is attended by many researchers, because of con-
venience in formulations and acceptable results in comparisonwith
two other methods [15]. The continuum mechanics method is
categorized to three differentmethods: 1- couple stress theory [16],
2- modified strain gradient theory [17], and 3-The Eringen non-
local elasticity theory [18]. The Eringen non-local elasticity theory
is widely used to analyze the mechanical behavior of nano-
structures. Eringen theory by considering the small scale effects,
explains that the stress in a reference point is affected by the strains
inwhole body domain or the interactive bonds between the carbon
atoms are not neglected and have significant effects on mechanical
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behavior in nano scales. So, using of classical elasticity theory
generates unacceptable results [19].

Reddy et al. [20], reformulated the different types of beam
theories such as EulereBernoulli, Timoshenko, Levinson and Reddy
based on Eringen non-local elasticity theory and studied the
bending, vibrations and buckling of the nano beams. Pradhan [21]
investigated the buckling of rectangular graphene sheets, consid-
ering the isotropic material properties and the third order shear
deformation theory (TSDT). They showed that using of TSDT plate
theory for moderately thick plates causes the more accurate results.
Shen Shen [22] studied bending, vibrations and post buckling of
rectangular graphene plates resting on elastic foundation, using
classical plate theory by considering the nonlinear strains field in
thermal environment. Ansari et al. [23] proposed an analytical so-
lution to calculate the critical buckling load for a mono layered
graphene sheet under uniform loading by use of Galerkin method.
Hosseini-hashemi et al. [24] investigated the buckling of rectan-
gular graphene plates using the Mindlin and Eringen non-local
elasticity theories. The obtained results are compared with
EulereBernoulli, CLPT and higher order shear deformation theories.
Pouresmaeeli et al. [25] obtained the exact solution for non-local
vibration of double-orthotropic nanoplates embedded in elastic
medium. Jomehzadeh and Saidi [26] studied the large amplitude
vibrations of bilayer graphene sheets embedded in a nonlinear
polymer matrix. Mohammadi et al. [27] studied free transverse
vibration analysis of circular and annular graphene sheets using
non-local continuum mechanics for various types of boundary
conditions. Zhou et al. [28] studied the bending of bilayer graphene
sheets under transverse loading in thermal environment. The
nonlinear strains field and CLP theory are used in that literature and
they showed that the small scale effects have an important role in
nonlinear bending analysis of graphene sheets. Zenkour et al. [29]
investigated the thermal buckling of nano plates embedded in an
elastic WinklerePasternak matrix, using the sinusoidal shear
deformation plate theory and compared the results with CLPT and
FSDT theories. Radebe et al. [30] studied the buckling of rectangular
nano-plates with uncertain orthotropic material properties using
non-local theory. They considered the nano-plate as a non-local
plate to take the small-size effects into account with the small-
scale parameter also taken to be uncertain. They studied the ef-
fect of small scale on natural frequencies. Shear buckling of
orthotropic rectangular graphene plates in thermal environment is
investigated by Mohammadi et al. [31]. They showed that the
critical shear buckling load of single layers graphene sheets is
strongly dependent on the small scale parameter. The Exact closed-
form solution for non-local vibration and biaxial buckling of
bonded multi-nanoplate system is presented by Karli�ci�c et al. [32].
The nonlinear bending analysis of mono layered rectangular gra-
phene sheets in an elastic matrix is investigated by Golmakani and
Rezatalab [33]. They proved that the maximum deflection de-
creases along the increase of non-local parameter. Also in that
paper, the obtained results for local and non-local elasticity the-
ories are compared with each other.

In present study, the nonlinear bending of a bilayer orthotropic
graphene sheet is investigated based on the first-order shear
deformation theory considering Von Karman strain field. In order
to study the small scale effects on deflection, the Eringen's non-
local theory is applied. The DQM which is a numerical method is
applied to solve the partial differential governing equations.
Because, there are not any literatures available on bending of
bilayer graphene sheets, in order to demonstrate the accuracy of
obtained results, the results are validated with available papers in
bending of mono layer graphene sheets. The effects of different
conditions such as variation of van der Waals interaction bonds
between the layers, thickness of the graphene nanoplate, the length

to width ratio, non-local to local deflection ratio, linear to nonlinear
analysis, different types of boundary conditions, and the effects of
non-local parameter and the value ofWinklerePasternakmatrix on
the results are investigated.

2. Governing equations

A bilayer rectangular graphene sheet is considered with thick-
ness h, the length Lx, the width Ly, under uniform transverse loading
q resting on an elastic WinklerePasternak matrix. The geometry of
the plate is shown in Fig. 1. Most of the researches are based on the
classical plate theory (CLPT). This theory is only acceptable for the
plates that the ratio of thickness to length is small and includes
some assumptions; for example, neglecting the effects of trans-
verse shear deformations. When the thickness to length ratio is
considerable, the effects of transverse shear deformations are sig-
nificant and must be considered. Assuming that the ratio of thick-
nesses to length in graphene sheets is significant, so in this paper,
all the governing equations are derived based on the first-order
shear deformation theory (FSDT) that considers the neglected as-
sumptions in classical plate theory. According to the first-order
shear deformation theory, the displacement field can be
expressed as:

Uiðx; y; zÞ ¼ uiðx; yÞ þ zji1ðx; yÞ ði ¼ 1;2Þ (1)

Viðx; y; zÞ ¼ viðx; yÞ þ zji2ðx; yÞ ði ¼ 1;2Þ (2)

Wiðx; y; zÞ ¼ wiðx; yÞ ði ¼ 1;2Þ (3)

In Equations (1)e(3), ui, vi and wi are the displacement com-
ponents of the mid-plane along the x, y and z directions, respec-
tively. ji1 and ji2 explain the rotation functions of the transverse
normal about y and x directions. The index i ¼ 1, 2 refers to upper
and bottom layers respectively. The graphene sheet is assumed to
have large deformation, so considering von-Karman assumptions,
the strain field are expressed as follows:
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vx
þ z
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þ 1
2
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ði ¼ 1;2Þ (4)

εiy ¼ vvi
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þ z
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ði ¼ 1;2Þ (5)

gixz ¼ vwi
vx
þ ji1 ði ¼ 1;2Þ (6)

Fig. 1. Geometry of bilayer rectangular graphene sheet.
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