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a b s t r a c t

This study has two main objectives. First, we use the Airy stress function to derive an exact general
interior solution for an anisotropic two-dimensional (2D) plane beam. Second, we cast the solution into
the conventional form of 1D beam theories to clarify some basic concepts related to anisotropic interior
beams. The derived general solution provides the exact third-order interior kinematic description for the
plane beam and includes the Levinson/Reddyekinematics as a special case. By applying the Clapeyron's
theorem, we show that the stresses acting as surface tractions on the lateral end surfaces of the interior
beam need to be taken into account in all energy-based considerations related to the interior beam in
order to avoid artificial end effects. Exact 1D interior beam equations are formed from the general 2D
solution. Finally, we develop an exact interior beam finite element based on the general solution. With
full anisotropic coupling, the stiffness matrix of the element becomes initially asymmetric due to the
interior nature of the plane beam. By redefining the generalized nodal axial forces of the element, the
stiffness matrix takes a symmetric form.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Efficient use of anisotropic composite materials in mechanical
design requires thorough understanding of anisotropic elasticity
and accurate tools of analysis. Motivated by this, we study here a
two-dimensional (2D) plane beamwith anisotropic coupling effects
within the framework of 2D linear elasticity.

There are two well-known complex variable formulations for 2D
linearly elastic anisotropic plane problems, the Lekhnitskii and Stroh
formalisms [1e3]. When it comes to 2D interior plane beam prob-
lems, where the end effects are neglected by virtue of the Saint
Venant's principle, a number of more straightforward polynomial-
based stress function approaches can be found in the literature, e.g.
Refs. [4e6]. It is common for these classical polynomial approaches
that a solution is generated only for one problem at a time. In this
study, we first provide a more versatile method for 2D beams which
is based on a general interior solution derived using the Airy stress
function. Our approach is different from the generalization of Sil-
verman's method [4] by Ding et al. [7] in the way that, rather than
constructing stress functions for eachproblemseparately, the focus is
on solving the cross-sectional force and moment resultants along a
beam for each case in the samewayas in conventional beam theories,
while the core of the used stress function is always the same.

There is a number of ingenious theories meant specifically for
anisotropic beams, e.g. Refs. [8e13]. For a historical survey on the
topic, see the book by Hodges [14]. The mentioned anisotropic beam
theories are typically applicable to a wider variety of practical prob-
lems than the linearly elastic beamwith a rectangular cross-section
studied in this paper. However, it is commonplace in the referenced
treatments to employ engineering assumptions and/or to rely on a
quite heavy theoretical machinery. Therefore, it is often difficult to
see the underlying structure of the developments in a fully explicit
(and assumption-free) form in order to state something fundamental
onanisotropicbeams ingeneral. Thus, for the remainderof this study,
we view the derived 2D solution for the anisotropic plane beam as a
conventional one-dimensional (1D) beam theory in order to clarify
certain concepts related to anisotropic interior beams.

As the starting point for the 1D considerations, the general
solution provides the exact third-order interior kinematic
description for the plane beam. By “third-order kinematics” we
mean that the displacement components defined at the central
axis of the beam are expanded by third-order polynomials
throughout the height of the beam. Many approximate beam and
plate theories, which are used also in association with anisotropic
composite materials, are based on similar, but assumed,
displacement fields. For reviews on assumed third-order kine-
matics, see the works by Jemielita [15] and Reddy [16,17]. The
exact interior kinematic description derived from the general so-
lution in this paper includes, as a special case, the displacement
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field which is used to derive the widely known Levinson and
ReddyeBickford beam theories [18e20].

The long-standing belief in the literature is that the Levinson
beam theory is “variationally inconsistent”, that is to say, it cannot
be derived using the principle of virtual displacements. In contrast
to this, we showed in a very recent study that the Levinson theory is
actually variationally consistent [21]. The variational formulation
was carried out by taking into account the fact that the stresses of
the beam act as surface tractions on the lateral end surfaces of the
Levinson beam. On the other hand, it was shown that the boundary
layer behavior of the ReddyeBickford beam is artificial. In the
present study, the methodology utilized for the isotropic Levinson
theory in Ref. [21] is further elucidated within the 2D interior
framework of anisotropic elasticity.

The rest of the paper is organized in the following way. In Sec-
tion 2, we formulate the anisotropic plane beam problem to which
the solution is then given in terms of a stress function. The strains
are calculated from the stresses under plane stress conditions and
the exact 2D interior displacement field is obtained by integrating
the strains. Calculation examples are presented. In Section 3, three
kinematic variables defined at the central axis of the plane beam
are formed from the 2D interior displacement field. Using these
variables, the third-order kinematic description for the beam is
given. Clapeyron's theorem is employed to facilitate energy-based
considerations. Variational and vectorial approaches for interior
theories are discussed and finally 1D beam equations for the 2D
plane beam are obtained by a direct method. In Section 4, an exact
interior beam finite element is developed both by a force-based
method and from the total potential energy of the anisotropic
plane beam. Conclusions are presented in Section 5.

2. General interior approach for a plane beam

2.1. Problem formulation

A 2D linearly elastic homogeneous anisotropic plane beam un-
der a uniform pressure p is shown in Fig. 1. We have chosen the
uniform load as a representative load for our developments. The
beam has a rectangular cross-section of constant thickness t and
the length and height of the beam are L and h, respectively. The load
resultants N, M and Q stand for the axial force, bending moment
and shear force, respectively, and act at an arbitrary cross-section of
the beam. These cross-sectional load resultants are calculated from

NðxÞ¼ t
Zh=2

�h=2

sxdy ; MðxÞ¼ t
Zh=2

�h=2

sxydy ; QðxÞ¼ t
Zh=2

�h=2

txydy ;

(1)

which can be used to impose force and moment boundary condi-
tions at x ¼ ±L/2. The boundary conditions on the upper and lower
surfaces of the plane beam are

syðx;h=2Þ ¼ �p ; syðx;�h=2Þ ¼ 0 ; txyðx;±h=2Þ ¼ 0: (2)

The boundaryconditions are satisfied in a strong (pointwise) sense on
the upper and lower surfaces, but at the beam ends the tractions are
specified only through the load resultants and, thus, the boundary
conditions are imposed only in aweak sense [22]. The replacement of
the true boundary conditions at the beam ends by the statically
equivalent weak boundary conditions (load resultants) means that
the exponentially decaying end effects of the anisotropic plane beam
are neglected by virtue of the Saint Venant's principle and only the
interior solution of the beam is under consideration. The interior
solution represents actually a beam section with fully-developed
interior stresses which has been cut off from a complete beam far
enough from the real lateral boundaries at which the true boundary
conditions could be set. Using the Airy stress function J(x,y), the
stresses of the plane beam are obtained from the equations

sx ¼ v2J

vy2
; sy ¼ v2J

vx2
; txy ¼ �v2J

vxvy
; (3)

which satisfy the two-dimensional equilibrium equations. To
ensure compatibility, it is required that the stress function satisfies
the governing equation [23].

s22
v4J

vx4
� 2s26

v4J

vx3vy
þ 2ðs12 þ s66Þ

v4J

vx2vy2
� 2s16

v4J

vxvy3

þ s11
v4J

vy4
¼ 0;

(4)

where sij are the elastic compliances, see Eqs. (15)e(17). The solu-
tion to the interior plane beam problem is obtained by finding a
solution of Eq. (4) that satisfies the stress boundary conditions (2)
of the beam.

2.2. Interior stresses

By starting from the general polynomial of the fifth degree and
adapting a solution procedure outlined by Barber [22, Chap. 5] to
solve the polynomial coefficients, the stress function satisfying the
stress boundary conditions (2) can be found as

Jðx; yÞ ¼ c1y
2 þ c2y

3 � c3

�
3
4
h2xy� xy3 � 1

2
s16
s11

y4
�
þJq; (5)

where c1, c2 and c3 are constant coefficients and the part that de-
pends on the nature of the applied load is

Jq ¼ q
240I

"
8
s216
s211

y5 � 5x2ðh� yÞðhþ 2yÞ2
#

� q
120Is11

h
2s12y

5 þ 5s16
�
h2 � 2y2

�
xy2 þ s66y

5
i
;

(6)

where q ¼ pt is the uniform line load and I ¼ th3/12 is the second
moment of the cross-sectional area. The stresses are calculated
from Eq. (3), after which the load resultants are obtained from Eq.
(1) and can be written as

NðxÞ ¼ 2Ac1 þ 6Ic3
s16
s11

; (7)Fig. 1. 2D anisotropic plane beam under a constant uniform pressure. The load resultants
act at an arbitrary cross-section of the beam. The positive directions of the load resultants
are defined for later use in calculation examples and finite element developments.
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