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The error propagation and statistical-noise reduction method of Reid and Trainor for two-point corre-
lation applications in high-energy collisions is extended to include particle-pair references constructed
by mixing two particles from all event-pair combinations within event subsets of arbitrary size. The
Reid-Trainor method is also applied to other particle-pair mixing algorithms commonly used in corre-
lation analysis of particle production from high-energy nuclear collisions. The statistical-noise reduction,
inherent in the Reid-Trainor event-mixing procedure, is shown to occur for these other event-mixing
algorithms as well. Monte Carlo simulation results are presented which verify the predicted degree of
noise reduction. In each case the final errors are determined by the bin-wise particle-pair number, rather
than by the bin-wise single-particle count.
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1. Introduction

In correlation analysis of binned data the quantity of interest is
the covariance of observable x between arbitrary bins m and n,
given by

(Xm —Xm)(Xn —Xpn) = XmXn —XmXn (1)

where x is the bin content and over-lines indicate averages over
independent measurements. For example, high-energy collisions
between atomic nuclei x could represent the number of sub-
atomic particles produced and detected for each collision, or event,
within bins defined by particle 3-momentum. For example, such
bins could be constructed using the transverse momentum (p;)
(component of 3-momentum perpendicular to the direction of the
colliding beams), the azimuth angle (¢) in the plane transverse to
the beam, the pseudorapidity (#) where # = —log(tan 6/2) and €
is the polar angle relative to the beam direction, the azimuthal
angle difference (¢p; — ¢,) for arbitrary particles 1 and 2, and the
pseudorapidity difference (17, —#,). Quantity x,x, is the number of
particle-pairs in 2D bin (m,n) and XX, is calculated by averaging
product x;;x, over all collision events in the event collection. Pairs
of particles from the same event are referred to as sibling pairs.
Averages X, and X, are calculated using all events in the collection
where quantity XX, is the reference. For a given set of measured
events the covariance will have a unique numerical value. The goal
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of this paper is to calculate the statistical error in this quantity by
following and extending the error propagation and error reduction
method of Reid and Trainor [1].

In practical applications measured quantities X, x, and Xm,Xp
are affected by experimental inefficiency, acceptance and con-
tamination. Inefficiency and acceptance losses in single particle
counts and some contamination effects are readily corrected via
ratio Xmx,/(XmXn). However, two-particle inefficiencies, which
occur when signals in the detectors from two particles are unre-
solved, cannot be corrected this way. Such inefficiencies are due to
finite detector resolution and, if uncorrected, produce significant
artifacts in the correlations for heavy-ion collisions [2,3]. The
conventional correction method [3] involves removing particle
pairs whose signals (e.g. induced ionization, secondary particle
showers, etc.) fall within the resolution limits of the detector, and
then removing pairs of particles from mixed-events which would
have the same, relative locations in the detectors. Corrected results
are obtained by increasing the minimum required separation
between the detected signals of two nearby particles from zero
until ratio XX, /(XmXy) stabilizes. The practical consequence of this
correction procedure is that the reference x,,X,, must be calculated
by constructing uncorrelated pair counts in 2D bin (m,n) by aver-
aging over pairs of particles where each particle in a pair is
selected from different collision events, referred to as mixed-
events.

The statistical error of the covariance in Eq. (1) equals the
standard deviation of the distribution of covariance values corre-
sponding to independent, statistically equivalent event samples
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(event collections) of underlying parent distributions for quan-
tities x,, X, and X, x,. Analytical calculations of this error therefore
represent X, X, as random, event-wise fluctuating quantities
relative to the parent distribution. The sibling and mixed-event
pair-numbers are similarly represented.

In Ref. [1] Reid and Trainor derived a practical mixed-event
method for calculating the reference in which random, event-wise
fluctuations (noise) in x,,, and x,,, which are common to both sib-
ling and mixed-event pair numbers, cancel in the covariance,
significantly reducing the errors. For large data volumes summing
the total number of mixed-event pairs can be computationally
demanding. Various event-mixing algorithms have been devel-
oped by the heavy-ion community to reduce the necessary com-
putation time while retaining sufficient statistical accuracy. One
such method was discussed in Ref. [1]. The choice of the reference
and the event-mixing method strongly affects the statistical errors
in the final correlation measurement. In this paper the statistical
noise reduction method of Reid-Trainor will be extended and
applied to other, practical event-mixing algorithms. The con-
sequences of these event-mixing choices, or references, for the
statistical uncertainties in the correlations will be quantified.

The present application is for ultra-relativistic heavy-ion colli-
sions such as those measured by the STAR experiment [2,4] and by
the experiments at the Large Hadron Collider (LHC) [5,6]. The
methods presented here are also directly applicable to correlation
analysis of multi-particle production from any type of particle
collision. The present event-mixing technique for constructing an
uncorrelated reference distribution has analogs in, for example,
cosmology and acoustics. Measurements of the relative distance
correlation between galaxies within an angular patch of the sky
require an uncorrelated reference distribution. The latter can be
constructed from cross-correlated pairs of galaxies observed in
different sky patches or from randomly generated distributions of
galaxies [7,8]. In acoustical analysis of multiple, independent time
series the autocorrelation, or time-lag dependence, for each time
series must be referenced to a cross correlation between two
independent time series having the same lag time [9]. In these two
examples angular patches of sky or individual time series corre-
spond to collision events and binned numbers of galaxies or
acoustical amplitudes correspond to binned number of particles in
the present analysis.

This paper is organized as follows. In Section 2 the Reid-Trainor
procedure is derived and extended. In Section 3 their method is
applied to other event-mixing algorithms. Monte Carlo studies are
discussed in Section 4. Conclusions are given in Section 5.

2. Generalized Reid-Trainor event-mixing

In Ref. [1] the event collection was separated into pairs of
events with similar, total number of detected particles, or multi-
plicity. Event-mixing was only applied between the two events in
each pair. For arbitrary 2D bin (m,n) (m # n) the total number of
sibling pairs of particles in the collection is given by the sum

Ng 2
Smn=Y_ > ([+u){T+)) @)

g=1j=1

and the mixed-event pair sum is given by

Ng 2
Mmn = z Z [((M+pp@M+vy)+M+p) M +v))] 3)
g=1j>j=1
where indices j and g denote events and event groups, respec-
tively. Variables m and 7 are the parent distribution number of
particles in bins m,n (bins are denoted with subscripts) and

fluctuations are represented with random variables ¢ and v as in
Ref. [1]. Event group index g is suppressed in the notation for
fluctuations y and v. The number of pairs of events in the collec-
tion is Ng = Nevents/2 Where Neyents is the number of events in the
collection. Note that averages of random variables y and v within
an event collection only vanish in the Neyents — oo limit. For large
event numbers the summations in Egs. (2) and (3) are approxi-
mately given by

Smn A Nevents(TT + [T)
Minn ~ Nevents(T11) 4

where uv = (N;,;nts)zjyjyj is non-zero if the fluctuations in bins m

and n are correlated. For relativistic heavy-ion collisions uv/(mmn)
<1 [2,5,6] and for the purpose of calculating statistical errors the
small contributions of pr can be neglected. The large event
number limits are defined as Smn = Mmn = Nevents(Ii1).

From the above discussion the correlation quantity of interest is
Smn— Mmn and we calculate the number of correlated pairs per
reference pair given by [2,5,6]

Smn - an — Smn
an an

The statistical error in (Smn—Mmn)/Mmn equals the statistical
error in Ry, denoted by ARp, and is given by

<ARmn)2 B (Asm,,>2+ (Aan>2 2A(S. M)
ﬁmn 311111 mmn gmnmmn

where LAR,Ln)Z, etc. are variances, A(S, M),,, is a covariance, and
Rmn =Smn/Mmn. Simplifying Eq. (6) and averaging over event
collections yield

—1=Rmn—1. (5)

©)

2 [AGSm = Mm)P _ {(Smn = Mumn) = Smn = Mun)?) _ {(Smn = Mmn)®)
mn —-—2 - ——2 - —2
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(ARmn)2 =R,

@

where angle-brackets represent the average over independent
event collections, [A(Smn—Mmn)]? is the variance of difference
(Smn — Mmn), Rmn =1, and <§mn —an> =0.

The key result of Ref. [1] was to show that event-pair-wise
mixing eliminates contributions of single-particle fluctuations,
leaving only those contributions from fluctuations in the number
of pairs. Using Egs. (2) and (3) the variance in the numerator of Eq.
(7) simplifies to

2

Ng
(Smn— Mumn)*) = < LZ (H1V1 + V2 — V2 _//lzyl):l >

=1

Nevents - Nevents 5 5 5 5
= Wi+ D W ) ®)
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where averages over products of bin-wise fluctuations from dif-
ferent events vanish (see Appendix A). Carrying out the above
event averaging gives

{(Smn— an)2> = Nevents<0ﬁ612,>+Ng<6/2405 +0/240£

2 2, Poisson, p—— —
= 2Nevents<o'ﬂo'y> — 2Nevents(Ti) 2 2NeyentsMn

€))

where aﬁ and o2 are the variances in bins m and n, respectively.
These variances result from the following averages:

1 Nevents 5 5 5 5
Vi = 0,0
NEVEDIS ] — M] J o
1 Nevents
Wt | =o’o?
Nevents ] — 17t 1 wov

These factorized results are valid if the single-particle fluctuations
in bins m and n are uncorrelated, consistent with the above



Download English Version:

https://daneshyari.com/en/article/8170348

Download Persian Version:

https://daneshyari.com/article/8170348

Daneshyari.com


https://daneshyari.com/en/article/8170348
https://daneshyari.com/article/8170348
https://daneshyari.com

