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a b s t r a c t

Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they
can seed unfavorable energy modulations that can result in density modulations with associated emit-
tance dilution. This “micro-bunching instabilities” is naturally broadband and could possibly support the
generation of coherent radiation over a broad region of the spectrum. Therefore there has been an
increasing interest in devising accelerator beam lines capable of controlling LSC induced density mod-
ulations. In the present paper we refine these previous investigations by combining a grid-less space
charge algorithm with the popular particle-tracking program ELEGANT. This high-fidelity model of the
space charge is used to benchmark conventional LSC models. We finally employ the developed model to
investigate the performance of a cascaded LSC amplifier using beam parameters comparable to the ones
achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at
Fermilab.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal-space-charge-driven micro-bunching instabilities
arising in bunch compressors were predicted and observed over
the last decade [1–3]. It was recently proposed to employ such
micro-bunching instability mechanism to form attosecond struc-
tures on the bunch current distribution for the subsequent gen-
eration of coherent radiation pulses [4].

A possible beam line configuration capable of enabling the
micro-bunching instability is relatively simple. It essentially con-
sists of focusing section (e.g. FODO cells) where energy modula-
tions due to the LSC impedance accumulate, followed by a long-
itudinally dispersive section. The latter section, by introducing an
energy dependent path length, converts the incoming energy
modulation into a density modulation. Such an elementary cell is
often referred to as a LSC amplifier (LSCA). Most of the beamlines
studied so far consider a longitudinally dispersive section arranged
as a bunch compression chicane [or bunch compressor (BC)]; see
Fig. 1. Several of these LSCA modules are concatenated so to result
in a large final density modulation. We further assume the com-
pression process in the chicane is linear [the incoming longitudinal
phase space (LPS) does not have any nonlinear correlations]. Such

a modulated beam, when participating in a radiation-generation
process, can produce coherent radiation at wavelengths compar-
able to the spectral range of the final density modulations.

The purpose of this paper is two-fold. The paper first intro-
duces a fully three dimensional (3D) multi-scale space-charge
algorithm adapted from Astrophysics [5]. The algorithm is used to
discuss some limitations of the one-dimensional LSC impedance
model commonly employed in LSCA investigations. Using the
latter benchmarked algorithm, we then investigate a possible LSCA
beamline configuration similar to the one studied in [4]. Finally,
we estimate the generation of undulator radiation seeded by the
LCSA. In contrast to Ref. [4] our study considers the case of a �
500 A 300-MeV electron beam produced in a conventional
superconducting linac.

2. Mechanism for longitudinal space charge amplifiers

Charged-particle beams are subject to self-interaction via
velocity and radiation fields. In absence of radiation processes (i.e.
acceleration), the effect of velocity fields (i.e. space charge) dom-
inates and its regime varies with the bunch density. Under a
simple 1D approximation, a comparison of the Debye length λD to
the root-mean-squared (rms) transverse beam size σ? and mean
inter-particle distance ΛpCn�1=3

e (where ne is the electronic
density) provides a criterion to assess the importance of space
charge effects on the beam dynamics. When σ? oλD space charge

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nima

Nuclear Instruments and Methods in
Physics Research A

http://dx.doi.org/10.1016/j.nima.2016.03.002
0168-9002/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: aliaksei.halavanau@gmail.com,

Z1720441@students.niu.edu (A. Halavanau).

Nuclear Instruments and Methods in Physics Research A 819 (2016) 144–153

www.sciencedirect.com/science/journal/01689002
www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2016.03.002
http://dx.doi.org/10.1016/j.nima.2016.03.002
http://dx.doi.org/10.1016/j.nima.2016.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2016.03.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2016.03.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2016.03.002&domain=pdf
mailto:aliaksei.halavanau@gmail.com
mailto:Z1720441@students.niu.edu
http://dx.doi.org/10.1016/j.nima.2016.03.002


effects are significant and often computed using the mean-field
approximation (i.e. the space charge force is derived from the
electrostatic potential associated to the particle distribution)
commonly implemented in particle-in-cell (PIC) algorithms.
However, when λD �OðΛpÞ, particle-to-particle “binary” interac-
tions play an important role and are needed to be accounted for
[6].

As the beam is accelerated the transverse and longitudinal
space-charge forces reduce respectively as Oð1=γ2Þ and Oð1=γ3Þ
where γ is the Lorentz factor. At the macroscopic level, e.g. for
spatial scale comparable to the bunch sizes, the space charge can
be accurately described by a mean field approach [7]. However, in
high-brightness beams – beams with low fractional momentum
spread – the weakened longitudinal-space charge (LSC) force can
still influence the beam dynamics at a microscopic level – i.e. for
spatial scales smaller than the bunch sizes – and small density
modulations (e.g. due to noise or imperfections) can result in LCS-
driven energy modulations. In this latter regime, the LSC is gen-
erally treated with a one-dimensional (1D) model.

To illustrate the main results of the 1-D model, we consider a
simple beam line consisting of a drift with length Ld (where the
beam is transversely contained) followed by a chicane with long-
itudinal dispersion R56. It is customary to characterize the strength
of the micro-bunching instability by associating the density gain
defined as

GðkÞ ¼ biðkÞ
bf ðkÞ

ð1Þ

where k� 2π
λ and λ is the observation wavelength and bi;f are

respectively the initial and final bunching factors defined as

bðωÞ ¼ 1
N

X
n

expð� iωtnÞ
�����

����� ð2Þ

where tn is the temporal coordinate of the n-th macroparticle, N is
the total number of particles and ω� kc. In the latter equation we
assume the beam's longitudinal density to follow the Klimonto-
vich distribution ρðtÞ ¼ 1

N

PN
j ¼ 1 δðt�tjÞ.

The gain for this simple beam line can be shown to be pro-
portional to the impedance Zðk; rÞ [8] following

G¼ CkjR56 j
I
γIA

4πLd jZðk; rÞj
Z0

e� 1
2C

2k2R2
56σ

2
δ ð3Þ

where IA¼17 kA is the Alfvèn current, σδ is the rms fractional
energy spread, C � 〈zδ〉=σz is the chirp, and Z0 � 120π is the free-
space impedance.

The exponential term in Eq. (3) induces a high-frequency cut-
off of the modulation

R56 � � c
ωσδ

: ð4Þ

Note, that after traveling through a BC, the modulation wavelength
will be shortened by a compression factor κ � ð1þR56CÞ. Although
the impedance Zðk; rÞ is partially determined by the properties of
the wakefields inside the BC [8], the LSC has much stronger effect
in amplifying density modulations [4,9].

For a transversely Gaussian cylindrically symmetric beam the
LSC impedance is given by [10]

ZðkÞ ¼ � i
Z0

πγσ?

ξσ ?

4
eξ

2
σ ? =2 Ei �ξ2σ ?

2

 !
ð5Þ

where Z0 ¼ 120π is the free-space impedance,
EiðxÞ � � R1� x dt e

� t=t, σ? is the rms beam size and ξσ ? � kσ? =γ.
Similar expression for a transversely uniform beam is provided in
[11].

The maximum of Eq. (5) is achieved at ξσ ? � 1, therefore the
optimal wavelength of the density modulation will be located
around

λopt ¼ 2πσ? =γ: ð6Þ

3. Simulation procedure and benchmarking

The nature of space charge forces lies in particle-to-particle
Coulomb interaction. Direct summation of the forces yields to Oð
N2Þ growth where N is the number of macroparticles, which makes
it impossible to compute at large N. Several approximation tech-
niques can be used: mean-field on a grid approximation [12], one-
dimensional space charge impedance [10], analytical sub-beams or
ensembles model [13], rigid-slice approximation [7]. All of those
methods reduce the problem's complexity via some approxima-
tions which ultimately limits the maximum attainable spatial
resolution. Most recent attempt used a three-dimensional-grid
space charge algorithm based on a periodic boundary [4].

From another point of view, space charge problem is very
similar to the well-known N-body problem in celestial mechanics.
One of the most effective algorithms for the gravitational N-body
problem is the so-called “tree” or Barnes–Hut (BH) algorithm [5],
which scales as OðN log NÞ. In this paper we present the results
obtained using a modified version of the code available in [14].
Such approach was successfully employed to simulate early-stage
beam dynamics in photocathodes [15] and laser ion cooling [16].

In brief, the BH algorithm initially surrounds the bunch dis-
tribution in a cubic cell called a root cell. The root cell is divided
into 8 sub-cells recursively, until it reaches the point where a
single sub-cell contains just one particle. Then forces only between
nearby cells are calculated directly, and the cells far away from
each other are treated as two large macroparticles with the total
charge placed in the cell's center of mass. The process of calcu-
lating net forces starts from the root cell and recursively parses the
cell hierarchy until it reaches the size of the smallest cell that is
predefined as a precision parameter. Thus, the algorithm is sig-
nificantly faster than a direct summation method. The BH method
does not preserve full Hamiltonian, yet for relatively small preci-
sion parameter the difference between direct summation is com-
parably small [5]. It should be pointed out in the direct summation
part (for neighboring cells) the BH algorithm also implements a
local smoothing of the potential to avoid singularities [5].

Another more efficient fast multipole method (FMM) algorithm
has been recently developed [17,18] and will be eventually used in
further refinement of our work. Though FMM algorithms are more

Fig. 1. Overview of a cascaded longitudinal-space-charge amplifier (LSCA) com-
posed of several LSCA modules. Each LSCA module incorporate a focusing channel
and a longitudinally dispersive section. The (red) rectangles and (blue) ellipses
respectively represent dipole and quadrupole magnets.
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