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a b s t r a c t

The present paper shows a comparison between classical two-dimensional (2D) and three-dimensional
(3D) finite elements (FEs), classical and refined 2D generalized differential quadrature (GDQ) methods
and an exact three-dimensional solution. A free vibration analysis of one-layered and multilayered
isotropic, composite and sandwich cylindrical and spherical shell panels is made. Low and high order
frequencies are analyzed for thick and thin simply supported structures. Vibration modes are investi-
gated to make a comparison between results obtained via the FE and GDQmethods (numerical solutions)
and those obtained by means of the exact three-dimensional solution. The 3D exact solution is based on
the differential equations of equilibriumwritten in general orthogonal curvilinear coordinates. This exact
method is based on a layer-wise approach, the continuity of displacements and transverse shear/normal
stresses is imposed at the interfaces between the layers of the structure. The geometry for shells is
considered without any simplifications. The 3D and 2D finite element results are obtained by means of a
well-known commercial FE code. Classical and refined 2D GDQmodels are based on a generalized unified
approach which considers both equivalent single layer and layer-wise theories. The differences between
2D and 3D FE solutions, classical and refined 2D GDQ models and 3D exact solutions depend on several
parameters. These include the considered mode, the order of frequency, the thickness ratio of the
structure, the geometry, the embedded material and the lamination sequence.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The present work proposes a free vibration analysis of simply-
supported one-layered and multilayered isotropic, composite and
sandwich cylindrical and spherical shell panels. Low and high fre-
quencies and related modes are investigated. The importance of
this topic has been extensively discussed in the reports by Leissa
[1,2], in the book by Werner [3] and in the work by Brischetto and
Carrera [4], among others.

The main aim of this work is the comparison between the re-
sults obtained by means of an exact three-dimensional (3D) solu-
tion, and those obtained by means of the classical two-dimensional
(2D) and three-dimensional (3D) finite elementmethods (FEM) and
by means of the classical and refined 2D generalized differential
quadrature (GDQ) models. The proposed exact 3D solution was
developed by Brischetto in Refs. [5e10] where the differential

equations of equilibrium written in general orthogonal curvilinear
coordinates were exactly solved by means of the exponential ma-
trix method. The 2D and 3D FE results were obtained by means of
the commercial finite element code Straus7 [11]. In this study,
Straus7 was chosen for its user interface simplicity. In particular, it
is easy to control the orientation of the plies in the stacking se-
quences and the location of the boundary conditions. The GDQ
models were developed from the geometric description of the
middle surface of shells. This description was carried out analyti-
cally using differential geometry [12,13]. The GDQ method can
discretize any partial or total derivative using a weighted linear
sum and the functional values in the definition domain. Therefore,
it is easy and straightforward to transform the analytic description
of a structure into a discrete set of equations [14e29]. The GDQ
method was introduced by Shu and Richards [30] to solve physics
problems related to fluids. A lot of advances have been made to
date, which are summarized in the review papers [31e33]. It has
been demonstrated that the GDQ method is a flexible and easy
procedure for solving systems of partial differential equations in
their strong form. Further applications related to finite elements in
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strong form using the GDQmethod can be found in Refs. [34e40] in
the case of vibrations of arbitrarily shaped structures.

In the most general case of exact three-dimensional analyses,
the number of frequencies for a free vibration problem is infinite:
three displacement components (3 degrees of freedom DOF) in
each point (points are ∞ in the 3 directions x, y, z) leads to 3 � ∞3

vibrationmodes. Assumptions are made in the thickness direction z
in the case of a 2D plate/shell model, the three displacements in
each point are expressed in terms of a given number of degrees of
freedom (NDOF) through the thickness direction z. NDOF varies
from theory to theory. As a result, the number of vibrationmodes is
NDOF � ∞2 in the case of exact 2D models. For exact 1D beam
models, the number of vibration modes is NDOF�∞1. In the case of
2D computational models, such as the Finite Element (FE) method
or the generalized differential quadrature (GDQ) models, the
number of modes is a finite number. This number coincides with
the total number of employed degrees of freedom:

PNode
1 NDOFi,

where Node denotes the number of nodes used in the FE mathe-
matical model or in the GDQ analysis, and NDOFi is the NDOF
through the thickness direction z in the i-node. It is clear that some
modes are not calculated by simplified models (such as computa-
tional two-dimensional models) [4]. In order to make a comparison
between the 2D and 3D FE free vibration results, the 2D GDQ re-
sults, and the 3D exact free vibration results, the investigation of
the vibration modes is mandatory in order to understand which
frequencies must be compared.

The most relevant papers concerning 3D solutions for free vi-
bration analysis of shell structures are shown below. The coupled
free vibrations of a transversely isotropic cylindrical shell
embedded in an elastic medium were analyzed in Ref. [41] where
the three-dimensional elastic solution used three displacement
functions. Free vibrations of simply-supported cylindrical shells
were studied in Ref. [42] on the basis of three-dimensional exact
theory. Extensive frequency parameters were obtained by solving
frequency equations. The free vibrations of simply-supported cross-
ply cylindrical and doubly-curved laminates were investigated in
Ref. [43]. The three-dimensional equations of motionwere reduced
to a system of coupled ordinary differential equations and then
solved using the power series method. The three-dimensional free
vibrations of a homogenous isotropic, viscothermoelastic hollow
sphere were studied in Ref. [44]. The surfaces were subjected to
stress-free, thermally insulated or isothermal boundary conditions.
The exact three-dimensional vibration analysis of a trans-radially
isotropic, thermoelastic solid sphere was analyzed in Ref. [45].
The governing partial differential equations in Refs. [44,45] were
transformed into a coupled system of ordinary differential equa-
tions. The Fr€obenious matrix method was employed to obtain the
solution. Soldatos and Ye [46] proposed exact, three-dimensional,
free vibration analysis of angle-ply laminated thick cylinders with
a regular symmetric or a regular antisymmetric angle-ply lay-up.
Armenakas et al. [47] proposed a self-contained treatment of the
problem of plane harmonic wave propagation along a hollow cir-
cular cylinder in the framework of the three-dimensional theory of
elasticity. A comparison between a refined two-dimensional anal-
ysis, a shear deformation theory, the Flügge theory and an exact
elasticity analysis was proposed in Ref. [48] for frequency investi-
gation. Further details about the Flügge classical thin shell theory
concerning the free vibrations of cylindrical shells with elastic
boundary conditions can be found in Ref. [49]. Other comparisons
between two-dimensional closed form solutions and exact 3D
elastic analytical solutions for the free vibration analysis of simply
supported and clamped homogenous isotropic circular cylindrical
shells were also proposed in Ref. [50]. Vel [51] extended exact
elasticity solutions to functionally graded cylindrical shells. The
three-dimensional linear elastodynamic equations were solved

using suitable displacement functions that identically satisfy the
boundary conditions. Loy and Lam [52] obtained the governing
equations using an energy minimization principle. A layer-wise
approach was proposed to study the vibration of thick circular
cylindrical shells on the basis of the three-dimensional theory of
elasticity. Wang et al. [53] proposed a three-dimensional free vi-
bration analysis of magneto-electro-elastic cylindrical panels.
Further results about the three-dimensional analysis of shells,
where the solutions are not given in closed form, can be found in
Ref. [54] for the dynamic stiffness matrix method and in Refs.
[55,56] for the three-dimensional Ritz method for the vibration of
spherical shells.

Conical shells were parametrically investigated using the GDQ
method in the works [57e59]. Free vibrations of spherical and
other revolution shells were proposed in Refs. [25e29,60e66].
Doubly-curved composite shells including new physical effects
were proposed in the papers [14e22]. Each of the previous citations
was fundamental for the present GDQ model because the code had
been previously tested for different cases.

The three-dimensional analyses proposed in the literature show
free vibrations of plates or shells. They separately analyze shell or
plate geometries and they do not give a general overview for both
structures. The proposed exact 3D model uses a general formula-
tion for several geometries (square and rectangular plates, cylin-
drical and spherical shell panels, and cylindrical closed shells). The
equations of motion for the dynamic case are written in general
orthogonal curvilinear coordinates using an exact geometry for
multilayered shells. The system of second order differential equa-
tions is reduced to a system of first order differential equations, and
subsequently solved exactly using the exponential matrix method
and the Navier-type solution. The approach is developed in a layer-
wise form imposing the continuity of displacements and transverse
shear/normal stresses at each interface. The exponential matrix
method was already used in Ref. [67] for the three-dimensional
analysis of plates in rectilinear orthogonal coordinates and in Ref.
[46] for an exact, three-dimensional, free vibration analysis of
angle-ply laminated cylinders in cylindrical coordinates. The
equations of motion written in orthogonal curvilinear coordinates
are a general form of the equations of motion written in rectilinear
orthogonal coordinates in Ref. [67] and in cylindrical coordinates in
Ref. [46]. The present 3D equations allow general exact solutions for
multilayered plate and shell geometries as already seen in the
second author's works [5e10]. In the literature review proposed in
this introduction, only a few works analyzed higher order fre-
quencies. Moreover, papers that discuss the comparison between
numerical 2D models and exact 3D models are even less frequent.
The present work aims to fill this gap, it compares the free fre-
quencies for cylindrical and spherical shell panels obtained by
means of the commercial FE code Straus7, the 2D GDQ models, and
the exact 3D solution. The proposed 3D exact solution gives results
for plates, cylindrical and spherical shell panels, and cylindrical
closed shells. However, the comparison with the commercial FE
code and the GDQ models is proposed only for cylindrical and
spherical shell panels because the plate and cylinder cases were
already investigated in Ref. [8]. The aim of the present paper is to
understand how to compare these three different methods (exact
3D and numerical FE and GDQ solutions) and also to show the
limitations of classical 2D theories.

2. Exact three-dimensional model

The equations of equilibrium written for the case of free vibra-
tion analysis of multilayered spherical shells embedding NL layers
with constant radii of curvature Ra and Rb are (the general form for
variable radii of curvature can be found in Refs. [68,12])
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