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a b s t r a c t

When an intense charged particle beam propagates through a given periodic focusing channel, it will
experience the phenomena of nonlinear resonance, collective instability or chaotic motion with different
conditions. In this paper, the collective envelope instability mechanisms are studied for symmetric beam
propagation in an axially symmetric periodic channel. The beam is characterized as collectively stable if
there exists a stable fixed point (SFP) located at the matched beam condition (rm;0) in (r; pr) phase space.
It is found that the well-known collective envelope instability is dynamically related to the period-two
orbits bifurcation of the matched SFP, meanwhile the unique stable SFP turns into an unstable saddle-
node, surrounded by 1/2 resonance islands. However, higher orders of resonance (l=n, n42) coming
from period-n bifurcation will not lead to collective beam instability because a new SFP emerges
immediately upon the bifurcation process. The orders of SFP bifurcation is numerically depicted by the
envelope tune ν¼ϕ/360, where ϕ is the eigenphase of the Poincaré tangent map T(s) in one focusing
period at SFP, as functions of depressed phase advance. With strong space charge, due to these reso-
nances from SFP bifurcation could be overlapped, mismatched beam would even show chaotic motion.
For specific parameters, regular orbits, resonance islands, chaotic regions formed by resonance over-
lapping are clearly depicted with frequency analysis and Lyapunov spectral exponents, a method that
may prove useful when extended to higher phase-space dimensions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The role of space charge has generated adequate attention in
recent years due to the increasing interest in high power linear as
well as circular accelerators [1–3]. Clear understanding of the basic
physics for nonlinear space charge dominated problems is of great
importance both in the area of theoretical and experimental study
for accelerator researchers. The analytical study of the related
problems began in the late 1950s when the self-consistent Kap-
chinskij–Vladimirskij (KV) [4] distribution was established. In the
1970s, Sacherer demonstrated the general form of the rms
envelope equation [5], and proved that the linear part of the self-
field depends mainly on the rms size of the distribution and only
weakly on its exact form. This encouraged researchers in this area
to explore deeply on topics such as beam collective instability [6–
8], nonlinear dynamics of beam envelope [9–16] and beam halo
formation [17–19] in the following years.

Basically, in the subject of high intensity beam collective
instability in periodic channels, two methods are normally used
for modeling the beam instability: the Vlasov–Poisson description
[7] and envelope Hamiltonian description [9,10,20]. In the Vlasov–
Poisson description, the beam collective modes obtained with the
perturbed space charge potential suggests that designed zero
beam current phase σ0 should be less than 90° to avoid the 2nd
order mode, less than 60° to avoid the 3rd order mode, less than
45° to avoid the 4th order mode, etc. In the rms-matched envelope
Hamiltonian description, the perturbed 2.5D rms envelope equa-
tions only show the 90° unstable stop band, named as collective
envelope instability, which is the same as 2nd even mode in Vla-
sov–Poisson description. Whereas, in the envelope Hamiltonian, if
beam was not rms matched, other phenomena such as envelope
nonlinear resonances, unpredictable chaos behavior would take
place [11–16]. In this paper, we focus on the envelope Hamiltonian
description.

To depict the nonlinear characteristic and the collective
envelope instability clearly, we perform a steady-state analysis of
the initial symmetric beam ( ~ϵx ¼ ~ϵy) envelope evolution in an
axially symmetric periodic channels, which is simply described as
a 1.5D nonautonomous system. Compared with the 2.5D system of
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the x–y coupled rms envelope equations, 1.5D systemwill lose one
degree of freedom, which means loss of possibly unstable modes
and coupling effects. However, the basic idea and physics under-
standing are the same. Another advantage with 1.5D analysis is
that it is easier to obtain the Poincaré surface plot to show the
nonlinear phenomena. In the 1.5D system discussed in the paper,
the envelope tune is defined as ν¼ϕ/360, where ϕ is the eigen-
phase of the Poincaré tangent map T(s) in one focusing period at
the SFP. It is proved that the process of the SFP periodic-two
bifurcation, representing the matched beam, is exactly related to
the collective envelope instability stop band, also named as half-
integer resonance or parametric resonance, where the matched
envelope tune ν¼1/2. Whereas, other nth order resonances νl;n ¼
l=n (n42), coming from periodic-n bifurcation only lead to mis-
matched resonance behavior around the SFP but no collective
instability at all because a new SFP emerges immediately. The
resonance conditions and instability regions are precisely pre-
dicted by the envelope tune νl;n. For specific cases, regular orbits,
resonance islands, and chaotic regions formed by resonance
overlapping are clearly depicted with frequency analysis and
Lyapunov spectral exponents.

This paper is organized as follows. In Section 2, the general
Hamiltonian equation for envelope oscillation in a periodic chan-
nel is presented. For symmetric beam, we limited our research on
the invariant manifold that leads to a 1.5D time dependent non-
autonomous system. In Section 3, the nonlinear resonance prop-
erties are studied with classic perturbation theory. The mechanism
of envelope instability, which actually lies in the process of
periodic-two bifurcation, is discussed in detail. In Section 4, the
conditions when higher orders of resonances take place and the
phenomenon of period-n bifurcation are discussed. The frequency
analysis together with the Lyapunov spectral exponents gives
precise locations of chaotic region, resonance islands and regular
orbits for when beam evolve under specific conditions. Discussion
and conclusions are given in Section 5.

2. The Hamiltonian for the envelope phase space of symmetric
beam

Using the longitudinal distance s as the time coordinate, gen-
erally, the KV Hamiltonian Henv for a transport channel can be
expressed as

Henv ¼ 1
2

�
p2x þp2yþkxðsÞ ~x2þkyðsÞ ~y2

�
�1=2K lnð ~xþ ~yÞþ ~εx 2

2 ~x2
þ ~εy 2

2 ~y2:

ð1Þ

Here, ~xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
x2 ðsÞ

q
and ~yðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
y2 ðsÞ

q
are considered as the rms

size of beam in real space, ~εx ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p2x �ðxpx Þ2

q
and ~εy ðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2p2y �ðypy Þ2
q

are rms beam emittance in ðx; pxÞ and ðy; pyÞ planes,
where ⋯ denotes a statistical average over the beam space, K ¼ 2
eI=4πε0mc3β3γ3 is defined as generalized perveance, which is a
dimensionless measure for the strength of the space charge, kx(s)
and ky(s) represent the external focusing field function with the
lattice period S, which satisfy kxðsÞ ¼ kxðsþnSÞ and
kyðsÞ ¼ kyðsþnSÞ, where n¼ 71; 72;… is the number of periods.
In the paraxial symmetric solenoid focusing channel, kxðsÞ ¼ kyðsÞ
¼ kðsÞ ¼ ½qBzðsÞ=2mγbβbc�2 where Bz(s) is solenoid field strength.
Assuming ~x ¼ ~y ¼ r, the motion of equation could be normalized as

d2r

ds2
þkzðsÞr�

K
r
� 1
r3

¼ 0: ð2Þ

For a more general discussion, the normalized axial magnetic field
profile kzðsÞ ¼ kzðsþ1Þ is expressed with the Fourier expansions. In

the following, we apply the method to an example with

kzðsÞ ¼ ða0þa1 cos ð2πsÞÞ2 ð3Þ
as suggested in Ref. [11–13]. Before discussion, we introduce sev-
eral terminologies used in this paper.

Matched beam: Noted as rm(s), possible solution of Eq. (2),
which is perfectly repeated from period to period. In the Poincaré
section of plot, it is represented by the unique SFP. If beam leaves
the SFP, then it is called mismatched.

Phase advance σ: In the matched condition, the phase advance
is defined as the phase shift of a particle under the influence of
space charge defocusing and external focusing over one period. It
can be evaluated as

σ ¼ σðKÞ ¼
Z sþ1

s

~ε
rmðsÞ2

ds ð4Þ

In the limit of zero space charge K¼0, σð0Þ ¼ σ0 is noted as the
undepressed zero beam current phase advance.

Tune depression η: η¼ σ=σ0 is defined as tune depression to
measure the importance of the space charge. Fixed parameters
ða0; a1;KÞ determined ðσ0;ηÞ uniquely.

3. Envelope instability: period two orbits bifurcation of mat-
ched SFP

Following the former study on beam envelope instability
[7,9,10,12–14,20], the eigenvalues λ¼ jλjeiϕ of the Poincaré tan-
gent map T(s) in one focusing period at matched SFP indicate the
growth rate (jλj ) and phase shift (ϕ) of the perturbation of the
matched envelope oscillation in one period [21]. Regions with
λa1, named as envelope instability stop band, represent that the
beam envelope cannot tolerate any tiny perturbation and will
increase exponentially. In the following discussion, we do not
distinguish between the terminology “envelope instability” and
“matched SFP instability”. With similar method as in Ref. [20], the
stability characteristics of the nonautonomous system equation (2)
are studied. Fig. 1 gives an example, with a0¼ 1:7, a1¼ 1:07, of the
eigenvalues and eigenphases of the tangent map T(s) at the mat-
ched SFP as function of phase advance σ, which decreases from σ0
as the space charge term K increases.

Firstly, it can be noted that, for a specific space charge para-
meter K, there are 3 eigenvalues noted as λ1, λ2, λ3 corresponding
to the direction of time s, position r and momentum pr. Only one
collective mode, analogous to “breathing mode” or “quadrupole
mode” in 2.5D system, could be excited. λ1 refers to the inde-
pendent variable time with the condition log e jλ1 j ¼ 1 and ϕ1 ¼ 0.
In the direction r and pr, the eigenvalues λ2 and λ3 are reciprocal
pairs and complex conjugates which satisfy jλ2 j ¼ 1=jλn3 j and
ϕ2 ¼ϕn

3, which means the total phase space of the Hamiltonian
system meets the Liouville theorem. If the phase space in one
direction is stretched, the other is always compressed. Secondly,
there is one envelope instability stop band between the region
53:51rσr701 (1:84rKr3:05) with jλ2 j ¼ 1=jλn3 ja1. Not sur-
prisingly, this collective instability is excited whenever the con-
dition ϕ2 ¼ϕ3 ¼ 1801 is satisfied, which is termed as half integer
resonance with oscillation tune ν¼180/360¼1/2.

Fig. 2(a)–(f) shows the topology configuration evolution of the
(r; pr) phase space. With zero beam current ðK ¼ 0Þ, Fig. 2(a), the
unique SFP represents the matched beam, which is surrounded by
an infinite number of invariant tori, each describing a mismatched
beam whose envelope exhibits stable betatron oscillation around
the matched SFP. At the point where increasing space charge
causes the eigenvalues to leave the axis, the unique SFP disappears
and bifurcates into period two orbits, Fig. 2(b)–(d), where K¼1.9,
2.2, 3 respectively; the original SFP turns into a saddle�node, and
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