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a b s t r a c t

A closed form expression is presented for the irreducible Cartesian tensor of highest weight, for arbitrary
order. Two proofs are offered, one employing bookkeeping of indices and, after establishing the con-
nection with the so-called natural tensors and their projection operators, the other one employing purely
coordinate-free tensor manipulations. Some theorems and formulas in the published literature are
generalized from SO(3) to SO(n), for dimensions nZ3.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of spin polarized beams in accelerators (in fact,
ensembles of polarized particles in general) leads naturally to the
study of irreducible representations of the rotation group. A
review of spin dynamics in accelerators can be found in [1]. An
important text on group representation theory is that by Weyl [2],
with many important results for the classical groups in general.
The most widely employed formalism in this regard (for the
rotation group) is that of irreducible spherical tensors. The theory
of spherical harmonics is very well developed and is described in
many texts. For example, the text by Jackson [3] gives a detailed
application for problems in electrodynamics. In this context, one
should note that, given the connection to group representation
theory, the subject of irreducible tensors is of relevance to a wide
variety of academic disciplines. In fact, the major references cited
below come from theoretical chemistry. For this reason, the results
and proofs below will be placed in a general setting. It is the
author's hope that by so doing, just as he found important results
in papers on theoretical chemistry, so also the material in this
paper may prove to be of interest beyond specialized applications
to spin polarized beams in accelerators.

In addition to spherical harmonics, it is also of interest to
employ Cartesian coordinates and irreducible Cartesian tensors.
This paper presents a closed form expression for the irreducible
Cartesian tensor of highest weight, for tensors of arbitrary order.
To avoid confusion of terminology, let us clarify the use of the
terms ‘rank’ and ‘order.’ Spherical harmonics are usually classified
as being of ‘rank n’ for n¼ 0;1;2, etc. For a square matrix, the rank

denotes the number of linearly independent rows or columns. For
a tensor, we employ the term ‘order’ to denote the number of
indices attached to the tensor. This usage follows the practice in
the text by Snider [4]. I shall denote the order by ‘p’ below because
the use of ‘r’ might be confusing and ‘o’ is an obviously poor
choice. For p¼2, the answer is well known to be a symmetric
traceless 3�3 matrix. Although specific results for higher orders
have been derived, e.g. p¼3 and 4, what about a general formula
for all higher orders? In this context, Coope et al. [5] and Coope
and Snider [6] published significant papers with results of
immediate relevance to the current paper. Many of the theorems
and formulas in the above papers in fact generalize naturally to SO
ðnÞ for dimensions nZ3. The relevant expressions for SO ðnÞ will
be presented in Section 6. The formulas involve Gegenbauer
polynomials, which are the generalizations of the Legendre poly-
nomials to higher dimensions.

The literature on applications of irreducible tensors to pro-
blems in atomic, molecular and particle physics, and also chem-
istry, is vast. In fact, the major references for our purposes are from
theoretical chemistry [5–9]. Results from [10–12] will also be cited.
As in all of the above papers, we are concerned with the three-
dimensional representation of SO(3), denoted by 1 below. The p-
fold tensor product can be decomposed into a direct sum of irre-
ducible representations of SO(3)

1 � ⋯ � 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
p

¼ p � ⋯ ð1:1Þ

The direct sum on the right hand side consists of tensors of
weights w, where 0rwrp. The object of interest in this paper is
the tensor of highest weight, i.e. w¼p. It is known that this tensor
is unique and is totally symmetric under an arbitrary permutation
of the indices, and is traceless under the contraction of any pair of
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indices. The well known case of p¼2 will clarify the notion of
weight and order: 1 � 1¼ 2 � 1 � 0. The right hand side consists
of a direct sum of tensors of weights 2, 1 and 0, respectively. In
component notation, with an obvious notation,

Tij ¼
δij
3

T ð0Þ þεijkT
ð1Þ
k þT ð2Þ

ij : ð1:2Þ

(Unless otherwise stated, the indices run from 1 through 3 in this
paper.) The Einstein summation convention is employed in this
paper. It is well known that the tensor of highest weight T ð2Þ

ij is a
symmetric traceless matrix (p¼2 and weight w¼ p¼ 2 in this
case). The tensor of weight 0 is essentially an irreducible tensor of
order 0 and the tensor of weight 1 is essentially an irreducible
tensor of order 1. They are multiplied (or contracted) with Kro-
necker deltas or the Levi–Civita tensor εijk to raise them to a higher
order, but their information content is of a lower order wop.
Following the terminology in [5], we shall use the term natural
tensor to denote the irreducible Cartesian tensor of order p and
highest weight w¼p. It is clear from Eq. (1.2) that the tensors of
lower weight are also natural tensors, but of lower order. For
example, for p¼3, we can form third order tensors of weights 0,
1 and 2 via εijkT

ð0Þ, δijT
ð1Þ
k and εijaT

ð2Þ
ak , respectively, and obvious

permutations of the indices. Note that, unlike the tensor of highest
weight, the tensors of lower weight are in general not unique.

2. Natural tensor of order p

The natural tensor of order p will be denoted by TðpÞ in
coordinate-free notation and by T ðpÞ

i1…ip
in terms of indices i1;…ip.

Since we shall need to symmetrize over the indices in many of the
formulas below,we introduce some notation for brevity. The
notation

P
symm denotes a symmetrized sum of the arguments,

while curly braces f⋯g denote a normalized symmetrized sum. For
example,for distinct vectors u and v,

P
symmuv¼ uivjþujvi and

uvf g ¼ 1
2

P
symmuv. Next,for three vectors,

P
symmuvv¼ uivjvkþujvi

vkþukvivj and uvwf g ¼ 1
3

P
symmuvv. In general,the normalized

symmetrization requires a division by the number of distinct
combinations. The expression for the natural tensor of order p is
then as follows. For spin polarized particles in accelerators,we are
typically interested in tensors referenced to a quantization axis,say
n. (Note that n is in general a function of the phase space location
ðq;pÞ of the canonical coordinates and conjugate momenta. See [1]
for details concerning the spin eigenstates in accelerators. Such
issues are not pertinent in this paper.) It is perhaps easier to
visualize if the expression is first displayed using indices. It has
long been known that T ð0Þ ¼ 1, T ð1Þ

i ¼ ni and T ð2Þ
ij ¼ ninj�1

3δij. For
higher orders, in fact pZ2,

T ðpÞ
i1…ip

ðnÞ ¼ ni1ni2…nip

� 1
2p�1

X
symm

δi1 i2ni3…nip

þ 1
ð2p�1Þð2p�3Þ

X
symm

δi1i2δi3i4ni5…nip

� 1
ð2p�1Þð2p�3Þð2p�5Þ

X
symm

δi1 i2δi3 i4δi5 i6ni7…nip þ⋯

ð2:1Þ
The permutations span all distinct combinations of the indices.
There are in total 1þ⌊ðp=2Þc rows. If p is odd, the last row will
contain ni1δi2 i3…δip� 1ip þ permutations, while if p is even the last
row will contain only products of Kronecker deltas, viz. δi1 i2…
δip� 1 ip þ permutations. A proof of the above expression will be
given below. The literature contains many papers on irreducible
Cartesian tensors, but they mostly derive explicit solutions for low

orders, with prescriptions to go to higher orders, but not a general
expression for arbitrary order p. The solutions for p¼3 and 4 were
derived by Stone [9] and Eq. (2.1) agrees with his expressions.

In coordinate-free notation, let Tð1Þ be a natural tensor of order
1 (a vector, not necessarily of unit length). Following [5], U denotes
the second order unit tensor with components δij. A dot product
denotes a contraction below. Then

TðpÞ ¼
X⌊ðp=2Þc
t ¼ 0

ð�1Þtð2p�2t�1Þ!!
ð2p�1Þ!! ðTð1Þ � Tð1ÞÞt

X
symm

ðTð1ÞÞp�2tðUÞt : ð2:2Þ

Note that Coope et al. derived the following elegant formula [5, Eq.
(17)]. Starting from a natural tensor of order j and a natural tensor
of order 1 (a vector), they showed how to construct a natural
tensor of order jþ1

Tðjþ1Þ ¼ ½TðjÞ � Tð1Þ�ðjþ1Þ ¼ TðjÞTð1Þ � j
2jþ1

ðTðjÞ � Tð1ÞÞU
� �

: ð2:3Þ

Since a natural tensor is totally symmetric in all of its indices, on
the right hand side Tð1Þ can be contracted with any index of TðjÞ.
The above procedure can be applied recursively, starting from j¼1,
up to any desired value, say p. The expression in Eq. (2.2) can
therefore be viewed as the solution of the recurrence relation in
Eq. (2.3).

3. Proof

The proof of Eq. (2.1) will now be given. A copy of the proof
below was sent to Coope and Snider. Snider very kindly replied
[13] with a derivation of Eq. (2.2) using purely coordinate-free
Cartesian tensor manipulations. Subsequently, Coope also replied
[14] with a derivation using the projection operator EðjÞ derived in
1970 by Coope and Snider [6, Eq. (6)]. The details of Coope's ele-
gant and succint derivation, which also employs purely
coordinate-free Cartesian tensor manipulations, will be presented
in Section 5.

The present proof makes explicit use of the bookkeeping of
indices. First, by construction the expression in Eq. (2.1) is a tensor
of order p and totally symmetric under an arbitrary permutation of
its indices. The presence of the first term ni1…nip makes it unique:
any other candidate solution must contain the same term. To
demonstrate that the expression is irreducible, it suffices to show
that it vanishes identically under the contraction of any pair of
indices. Without loss of generality, we contract i1 and i2. We must
show that δi1i2T

ðpÞ
i1 i2i3…ip

vanishes identically. The proof proceeds by
analyzing the terms in Eq. (2.1) line by line, keeping track of the
bookkeeping as we proceed. The contraction of the first line in Eq.
(2.1) with δi1i2 yields (L1 for “line 1”) L1 ¼ ni3…nip . The second line
in Eq. (2.1)contains a sum of terms with exactly one Kronecker
delta in each term. (The tth line in Eq. (2.1) consists of a sum of
terms with exactly t Kronecker deltas in each term, counting from
t¼0.) One term contains a factor δi1i2 , there are p�2 terms which
contain a factor δi1 j (where 3r jrp), there are p�2 terms which
contain a factor δi2k (where 3rkrp), and the remaining terms
each contain a factor ni1ni2 . The contraction of the first three sets of
terms with δi1i2 all yield the product ni3…nip . Consider these terms
first and denote their sum by L2a. Then

L2a ¼ � δi1 i2
2p�1

"
δi1 i2ni3…nip þδi1 jni2ni3…nj…nip|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3r jrp

þδi2kni1ni3…nk…nip|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3rkrp

#

¼ �3þp�2þp�2
2p�1

ni3…nip

¼ �2p�1
2p�1

ni3…nip

¼ �ni3…nip
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