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a b s t r a c t

The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the
absence of known detector efficiency. This method exploits the influence of the presence of one detector,
in the count rate of another detector when they are placed one behind the other and define statistical
estimators for the absolute number of incident particles and for the efficiency. The method and its
detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we
apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source
surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is
extended for its application where particles arriving at the detector obey a Poisson distribution and also,
for the case when efficiency is not constant over the energy spectrum of interest.

Experimental distributions and derived parameters are compared with theoretical predictions of the
method and implications concerning the potential application to the absolute calibration of neutron
sources are considered.

& 2015 Published by Elsevier B.V.

1. Introduction

A new method for the absolute determination of particle flux in
the absence of known detector efficiency, “Influence Method”, was
recently published [1]. This method exploits the influence of the
presence of one detector, in the count rate of another detector
when they are placed one in front of the other. This influence is
expressed as a modification in the detection probability of a sec-
ond detector after the radiation has traversed the first detector.
This scheme can be interpreted as a method where the sample of
the second variable is influenced by the first one, for which reason
we call it the “Influence Method”.

In the simplest case, let two detectors with the same efficiency
ε, be placed one behind the other at a certain distance from the
radiation source as schematized in Fig. 1. Particles arriving at the
face of detector X (in timeΔt) can be written as n¼ no∙εg where εg
is the geometric efficiency.

The original introductory presentation of the method was
subject to the hypothetical conditions of, the particle arriving on
the first detector (n) being constant and both detector efficiencies
(ε) being also constant in the energy range of the incoming flux
(the case for two different efficiencies was treated in the original
work [1]). The constancy of efficiency over an energy range being

realistic only in few cases, mostly in neutron time of flight spec-
trum determinations.

With this condition, the number of particles counted by
detector X is an aleatory variable (X) whose distribution is a
binomial of parameters n and ε (X � Biðn; εÞ). In the proposed
scheme, particles not detected at X (Xout ¼ n�X) impinge on
detector Y. Thus, the number of those particles detected by Y are
an aleatory variable (Y) whose distribution is also a binomial of
parameters n and ε∙ð1�εÞ ¼ ε∙q (Y � Biðn; εqÞ [1,2]), where q¼
1�εð Þ represents the probability of not being detected. Then, the
expected value of the variable X is μx ¼ nε and the expected value
of Y is μy ¼ nεq¼ nε 1�εð Þ.

In the simplest of these cases, the statistical estimator defined
in the Influence Method for the absolute number of incident par-
ticles was defined as:

n̂ ¼ x2

x�y
ð1Þ

where x represents the counts of the first detector and y the
counts of the second.

Another estimator was defined for the detection efficiency:

ϵ̂ ¼ x�y
x

ð2Þ

Replacing the expressions of the expected values (μ) for x and y
into Eqs. (1) and (2), yields precisely the parameters to be mea-
sured (n, ε). The detailed mathematical description of these
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estimators conditions of applicability and their statistical uncer-
tainties, are treated in [2].

In this work we present the practical application of the Influ-
ence Method for the usual case where the particle number arriving
at the detector bears a Poisson distribution and, both, detector
efficiency and spectral distribution of the incoming radiation are
functions of energy.

In what follows, the theoretical frame is analysed for the
application of the method to the general case descripted above.
This is later compared with the experimental results from the
application of this method to the determination of the thermalised
neutron flux, emerging from a spherical light-water moderator
enclosing an 241AmBe neutron source, measured with two
identical 3He proportional counters.

It is not the purpose of this work to find an absolute value of
the source strength, but to exemplify the application of the
method.

2. Incoming flux whit Poisson distribution

For the introduction of the Influence Method [1,2] detectors of
constant efficiency facing an also constant flux of particles, were
considered. Let us now consider a radioactive source emitting
particles in accordance with a Poisson distribution.

In this case, the number of particles falling on the forward
detector (detector X) in time Δt, are an aleatory variable (Z)
Poisson distributed with parameter λ¼n (Z � PoiðnÞ). Here n is the
expected value of Z, the amount of particles incident upon the
detector, and they relate to the number of source particles (no) in
the same time interval Δt through the geometrical efficiency (εg)
through (n¼ no∙εg). Thus, detector X obeys a binomial distribution
of parameters Z and ε (X � BiðZ; εÞ), being ε the intrinsic efficiency
of that detector. In Appendix A it is demonstrated that under these
conditions X is also Poisson distributed (X � Poiðn∙εÞ Eq. (A.4)).

Particles not detected by the forward detector X, which have
traversed it (Xout ¼ Z�X), are Poisson distributed (Xout � Poiðn∙qÞ
Eq. (A.6)) where q¼1–ε is the probability of not being counted.
The backward detector Y receives those Xout particles. In Appendix
A it is demonstrated that under these conditions Y is also Poisson
distributed (Y � Poiðn∙ε∙qÞ Eq. (A.10)).

The parameters of the variables under these conditions are:
The expected value of variable X:

μx ¼ n∙ε ð3Þ

And its variance:

σx
2 ¼ n∙ε ð4Þ

The expected value of variable Y:

μy ¼ n∙ε∙q ð5Þ

Its variance will be:

σy
2 ¼ n∙ε∙q ð6Þ
In the present case, the expected values are the same as when n

was supposed to be constant, but their variances are different.
The covariance σxy and the correlation coefficient ρ between

these variables are deduced in Appendix B and both turn out to be
zero in the present case:

σxy ¼ ρ¼ 0 ð7Þ
It must be stressed that this does not imply that the variables

are independent.
To find the expected values of the estimators and their var-

iances in the present case, the same procedure described in [2] has
to be applied, employing the new expressions for the expected
values and variances of the variables (Eqs. (3) through (7)). This
calculation yields precisely the same expressions for the expected
values of the estimators as obtained in [2], when n was taken to be
constant (Eqs. (11)–(15) in Ref. [2]). Consequently, the condition of
applicability of the method turns out to be the same

nc2=ε3þ5 = ðε∙ð1�εÞÞ ð8Þ
For the variance of estimator n̂, using Eqs. (3) through (7) in Eq.

(17) of Ref. [2] it results:

σn̂
2 ¼ VARðn̂Þffin∙ 4ϵ2�5ϵþ2

� �
ϵ3

ð9Þ

Here we must point out an important difference with the case
when n was constant. When the particle source is Poisson dis-
tributed and detectors efficiencies approach 1, the uncertainty of
our estimator (σn̂ ) approaches

ffiffiffi
n

p
, while in the case where n was

constant, if ε-1, σn̂-0.
For the variance of estimator ε̂, using Eq. (3) through (7) in Eq.

(19) from Ref. [2] it results:

σ2
ϵ̂ ¼ VAR ϵ̂

� �ffi 1�ϵð ÞU 2�ϵð Þ
nϵ

ð10Þ

This is the same expression as for the case where n was taken
to be constant.

For a given set of measured values (x, y), n and ε can be
replaced in Eq. (9) by their expressions given in Eqs. (1) and (2)
which finally leads to the expression of the estimator for the
number of particles and its statistical uncertainty (at the 68%
confidence level) for the Poisson source,

n̂ ¼ x2

x�y
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3∙ x�2yð Þ2þxy
� �r
ðx�yÞ2

0
BB@

1
CCA ð11Þ

In the same way for the efficiency, the expression of the esti-
mator for the efficiency and its statistical uncertainty (at the 68%
confidence level) is,

ε̂ ¼ x�y
x

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðxþyÞ

x3

r !
ð12Þ

Finally, if the corresponding condition for the applicability of
the method is satisfied (Eq. (8)) and n is large, the joint distribu-
tion will be normal bivariate [3–5] with parameters defined by Eq.
(3) through (7), whose probability density function is:

f ðx; yÞ ¼Q∙exp
�1
2

x�μx

σx

� �2

þ y�μy

σy

� �2
" #( )

ð13Þ

where Q ¼ 1= 2πσxσy
� �

.
Then, being x and y considered continuous, the estimator

defined in Eq. (1) can assume any value and then n̂ ¼N results a
continuous variable.
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Fig. 1. Scheme of the measurement array proposed by the “Influence Method”.
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