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a b s t r a c t

In previous research, we developed a three-dimensional (3D) boundary magnetic charge method
(BMCM) for high-accuracy field calculations in a static magnetic field, even when there exist great dif-
ferences between the magnitudes of permeability between neighboring magnetic materials. This
method, however, cannot be applied to a system that contains saturated magnetic materials. In the
present study, therefore, we have developed a novel method that addresses this issue. According to this
new method, we divide the region containing the magnetic material into small-volume elements and
divide the boundaries between neighboring small-volume elements into small-surface elements,
assigning each element an appropriate initial value of permeability. The magnetic field inside and outside
of the magnetic material is calculated using this permeability. The value of the permeability of each
element is iteratively updated using μ–H data. The updated value of the permeability after the i-th
iteration, μi, is compared with that of the previous value, μi�1. If the difference between the two values is
within a preset range, the iteration process is judged to have converged and the value of μi is regarded as
the final converged value of the permeability. The magnetic field at an arbitrary point in space and/or
inside the body of the magnetic material is calculated from the converged permeability of each element.
As a result, we have succeeded in developing a novel BMCM for the calculation of a static magnetic field
with high accuracy in a system containing saturated magnetic materials.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The boundary magnetic charge method (BMCM) is used for
calculating a static magnetic field and is based on the fact that
there exists a formal correspondence between a static magnetic
field and an electrostatic field. This means that the calculation of a
magnetic field by BMCM completely parallels the calculation of an
electric field by the boundary charge method (BCM) [1–3].

The BCM can be regarded as a boundary element method
(BEM). BEMs have distinct advantages over finite element methods
(FEMs) in that they give numerically smooth solutions with
excellent accuracy and can be used to treat an open-boundary
system. Therefore, as an application of electrostatic field calcula-
tions, BEMs have been widely used for analyzing the character-
istics of electron guns [4,5]. In contrast, the BEM for a static
magnetic field has not come into wide use, and is mentioned in
only a limited number of references [6–9].

The BMCM is also yet to be widely used for calculating the
magnetic field, except for a few examples that treat magnetic

deflection yokes [10–12]. The reason might be ascribed to the poor
accuracy and long computation time of BMCM, which are mainly
caused by numerical double-integration.

We have recently developed a three-dimensional (3D) BMCM
for high-accuracy field calculations in a static magnetic field, even
when there exists a great difference between the magnitudes of
the permeability of neighboring magnetic materials [13]. As a
typical example of this calculation, we have performed electron
optical analysis on a magnetic-field-superposed objective cathode
lens using both BCM and BMCM [14]. The conventional BMCM,
however, cannot be applied to a system containing saturated
magnetic materials.

Kasper treated a saturated magnetic lens using BEM for the first
time [15]. However, the numerical accuracy of the approximate
method used in Ref. [15] was found to be inadequate for some
saturated lenses. On the other hand, although calculations on
saturated magnetic lenses using FEM have been frequently
undertaken [16–19], these calculations have all been two-
dimensional analyses using the rotationally symmetric magnetic
lenses. For a general 3D magnetic field to be calculated using FEM,
the entire 3D space and the magnetic materials must be divided
into massive finite elements with tetrahedral or hexahedral
meshes. In BMCM, on the other hand, the 3D space need not be
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divided, i.e., only the surface or boundary of the magnetic material
is divided. The number of divisions needed in BMCM is one order
of magnitude smaller than that needed in FEM, and this sig-
nificantly decreases the computational load. Moreover, because
the division procedure is very simple, additional software, such as
a mesh generator or a mesh builder, are not required in BMCM,
although they are required in FEM.

In this study, therefore, we have developed a novel method that
is applicable to a static magnetic field containing saturated mag-
netic materials.

2. The principle of BMCM for computing magnetic fields in
saturated magnetic materials

Consider a system in which a magnetic material of high per-
meability μH is placed in a vacuum and magnetized by an external
steady current flowing near the magnetic material, as shown in
Fig. 1. Such a system is hereafter referred to as a static magnetic
field system. The magnetic field at an arbitrary point in space can
be expressed as the sum of the magnetic field HC caused by the
external current and the magnetic field HM caused by the magnetic
material magnetized by the current, where the relation rot HM¼0
holds true under the condition that there are no currents inside
the magnetic material. In this case, we have a formal correspon-
dence between a static magnetic field and an electrostatic field, as
shown in Table 1, where we assume that there is no charge in
space. These circumstances allow us to utilize BMCM to calculate
the magnetic field HM caused by the material magnetized by the
external current. For the calculation of the magnetic field HC

caused by the external current, we utilize the Biot–Savart law. The
resultant total magnetic field, H, at an arbitrary point in space is
expressed as H¼HCþHM.

2.1. Outline of BMCM for computing magnetic fields in saturated
magnetic materials

The first step in this method is to divide the entire region of the
static magnetic field into two sub-regions: the region L containing
a vacuum (i.e., the magnetic medium of low permeability μL) and
the region H containing the magnetic material of high perme-
ability μH. The boundary of division is selected so as to coincide
with the surface of the magnetic material of high permeability μH,

and is hereafter called the surface of the magnetic material, or the
interface between μL and μH, or simply the interface.

In a static magnetic field system that does not contain any
saturated magnetic material, it is sufficient to divide only the
surface of the magnetic material into small-surface elements,
because the value of permeability is treated as a constant value

anywhere inside the magnetic material. In a system in the pre-
sence of saturated magnetic materials, however, the body of the
magnetic material must further be divided into small-volume
elements, because the value of permeability inside the magnetic
material is not constant and is different from point to point inside
the magnetic material according to the magnitude of the magnetic
field at each point. The boundaries between neighboring small-
volume elements are further divided into smaller surface ele-
ments, and are hereafter called the boundaries inside the magnetic
material.

We then arrange magnetic charge densities on the surface of
the magnetic material and on the boundaries inside the magnetic
material. This is done in such a way that the magnetic charge
densities (σM)L and (σM)H are arranged on the μL and μH sides of
the interface, respectively. The double-layer arrangement of
magnetic charge densities is very efficient for high-accuracy
numerical calculations compared with the single layer arrange-
ment, especially in the case where there exists a great difference in
the magnitude of permeability between neighboring magnetic
materials. We assign a magnetic charge density (σM)H to the
boundaries inside the magnetic material. Note that the magnetic
charge densities must be assigned not only to both sides of the
surface of the magnetic material but also to the boundaries inside
the magnetic material. Further details of the assignment of mag-
netic charge densities will be described later.

These magnetic charge densities can be considered to appear as
a result of the magnetization of the material caused by the
external current. The static magnetic field can equivalently be
replaced by an electrode system in a vacuum by introducing these
magnetic charge densities and using a formal correspondence
between the static magnetic field and electrostatic field, as shown
in Table 1. The key point of our BMCM is that when we calculate
the magnetic field distributions in region L, for example, we use
the magnetic charge densities only in region L and do not use
them in region H. When we calculate the magnetic field dis-
tributions in region H, a similar rule is applied.

The magnetic potential ϕL(R0) at an arbitrary point R0 in region
L (vacuum) is expressed as the sum of the magnetic potential
caused by the magnetic charge density (σM)L(R) on the vacuum
side of the interface and the magnetic potential ϕC(R0) caused by
the external current flowing near the magnetic material:

ϕLðR0Þ ¼ϕCðR0Þþ
1

4πμ0
∬
SL

ðσMÞLðRÞ
R�R0j j dS: ð1Þ

Here, μ0 (¼μL) is the permeability of a vacuum, and SL is the
surface area of the magnetic material. The integration of Eq. (1) is
performed over the entire surface area SL, with the point R0 being
fixed. The magnetic field HL(R0) at the point R0 in region L
(vacuum) is expressed in terms of the gradient of the magnetic

μμ
μ

σ

Fig. 1. A system in which a magnetic material of high permeability μH is placed in a
vacuum of permeability μL and magnetized by an external steady current flowing
near the magnetic material.

Table 1
Formal correspondence between the static magnetic field and the electrostatic field
under the condition that there are no currents inside the magnetic material and
that there are no charges in space.

Electrostatic field Static magnetic field

Potential ϕ ϕM

Field E HM

Flux density D BM

Charge density σ σM
Media Permittivity ε Permeability μ

Relations rot E¼0 rot HM¼0
div D¼0 div BM¼0
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