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ABSTRACT

This paper deals with the forced vibration behavior of nonlocal third-order shear deformable beam
model of magneto—electro—thermo elastic (METE) nanobeams based on the nonlocal elasticity theory in
conjunction with the von Karman geometric nonlinearity. The METE nanobeam is assumed to be sub-
jected to the external electric potential, magnetic potential and constant temperature rise. Based on the
Hamilton principle, the nonlinear governing equations and corresponding boundary conditions are
established and discretized using the generalized differential quadrature (GDQ) method. Thereafter,
using a Galerkin-based numerical technique, the set of nonlinear governing equations is reduced into a
time-varying set of ordinary differential equations of Duffing type. The pseudo-arc length continuum
scheme is then adopted to solve the vectorized form of nonlinear parameterized equations. Finally, a
comprehensive study is conducted to get an insight into the effects of different parameters such as
nonlocal parameter, slenderness ratio, initial electric potential, initial external magnetic potential,
temperature rise and type of boundary conditions on the natural frequency and forced vibration char-

acteristics of METE nanobeams.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A new class of smart materials called magneto—electro—elastic
(MEE) has recently received significant attention from research
communities as a result of their novel magneto—electric coupling
effects [1]. These composite materials are comprised of the piezo-
electric phase and piezomagnetic phase and are capable of con-
verting energy amongst three forms, namely electric, magnetic and
elastic [2]. Compared to MEE bulk composite materials, MEE
nanomaterials possess higher magnetoelectric coupling [3]. Having
novel magnetoelectric coupling effects together with their smaller
size and larger surface to volume ratio have made MEE materials
very promising for broad potential applications in many techno-
logical fields such as vibration control, sensor and actuator
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applications, structural health monitoring, robotics, energy har-
vesting, medical instruments and so on [4—6].

During the two past decades, considerable effort has been put
into estimating the mechanical characteristics of nanostructures
[7—12]. Many experimental and atomistic simulations reported
that the properties of MEE materials are size-dependent [13—15].
Thus, it is of crucial importance to take the size effect into
consideration in theoretical and experimental studies concerning
with MEE nanostructures. Since the classical continuum theory fails
to capture the size effects of nanostructures, different types of
higher-order continuum theories have been developed [16—20].
The nonlocal elasticity theory proposed by Eringen [21,22] is one of
these non-classical theories which has been widely applied to
analyze the size effects of different nanostructures such as nano-
wires and nanorods [23—25], single- and multi-walled carbon
nanotubes [26—29], graphene sheets and nanoplates [30—33], mass
sensors [34], nano-peapods [35], nanobeams [36,37] and so forth.
The nonlocal elasticity theory has been also employed to explore
the size-dependent mechanical behavior of piezoelectric nano-
structures [38—40]. In this regard, Ke and Wang [41] and Ke et al.
[42] made the first attempt to study the thermo-electro-
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mechanical linear and nonlinear vibration of piezoelectric nano-
beams through the use of nonlocal Timoshenko beam theory. Uti-
lizing nonlocal theory in conjunction with Kirchhoff theory, Liu
et al. [43] analyzed the thermo-electro-mechanical free vibration of
piezoelectric nanoplates. They demonstrated that the natural fre-
quencies of these structures are very sensitive to the electro-
mechanical loadings and insensitive to the thermal loading.
Asemi et al. [44] by developing a nonlinear continuum model
investigated the large amplitude vibration of nano-
electromechanical resonators using piezoelectric nanofilms under
external electric voltage. On the basis of nonlocal Timoshenko
beam theory along with von Karman geometric nonlinearity, Liu
et al. [45] studied the buckling and postbuckling of size-dependent
piezoelectric nanobeams under thermo-electro-mechanical load-
ings. Ke et al. [46] studied the free vibration of piezoelectric
nanoplates under various edge supports by proposing a nonlocal
Mindlin plate model. Moreover, the thermo-electro-mechanical
vibration of piezoelectric cylindrical nanoshells with different
boundary conditions was investigated by Ke et al. [47] using a
nonlocal Love thin shell model. Besides the aforementioned
studies, a few investigations have been also carried out in the open
literature dealing with the surface effect on the piezoelectric
nanostructures [48—51].

More recently, using the nonlocal elasticity theory, a few
studies have been performed on the size-dependent vibration and
buckling behaviors of MEE nanostructures. Ke and Wang [52]
employed the nonlocal theory to explore the free vibration of
MEE Timoshenko nanobeams subjected to an external electric
potential, a magnetic potential and a constant temperature rise.
They found that the natural frequency of MEE nanobeams is not
sensitive to temperature rise, while it is highly affected by electric
and magnetic loadings. Li et al. [53] using the Mindlin plate theory
and ignoring the in-plane electric and magnetic fields analyzed the
buckling and free vibration of MEE nanoplates resting on a Pas-
ternak foundation. Ke et al. [54] studied the free vibration of MEE
nanoplates on the basis of nonlocal Kirchhoff plate theory. In
another study, the same authors [55] developed an embedded MEE
cylindrical nanoshell model based on the nonlocal Love's shell
theory. Their study revealed that the fundamental frequency of
MEE nanoshells is quite sensitive to thermo-electro-magnetic
loadings and also decreases with increasing the length-to-radius
ratio. Razavi and Shooshtari [56] based on the first-order shear
deformation theory together with von Karmdan nonlinear strains
studied the nonlinear free vibration of MEE rectangular plate un-
der simply supported boundary condition. They demonstrated that
the nonlinear frequency ratio decreases through using MEE layers
in composite plates.

In this study, we made the first attempt to analyze the forced
vibration behavior of nonlocal third-order shear deformable beam
model of magneto—electro—thermo elastic (METE) nanobeams
using the Eringen's nonlocal theory and the von Karman geometric
nonlinearity. It is assumed that the METE nanobeam is subjected to
the external electric potential, magnetic potential and uniform
temperature rise. Hamilton principle is first employed to formulate
the nonlinear governing equations and corresponding boundary
conditions which are then discretized through the generalized
differential quadrature (GDQ) method. Afterwards, a Galerkin-
based numerical technique is adopted to reduce the set of
nonlinear governing equations into a time-varying set of ordinary
differential equations of Duffing type. The pseudo-arc length con-
tinuum method is then employed to solve the vectorized form of
nonlinear parameterized equations. Finally, a detailed parametric
study is carried out to highlight the effects of nonlocal parameter,
slenderness ratio, initial electric potential, initial external magnetic
potential and temperature rise on the natural frequency as well as

forced vibration behavior of METE nanobeams under different end
supports.

2. Nonlocal theory for magneto—electro—elastic materials

Eringen's nonlocal elasticity theory [21,22] assumes that the
stress at a reference point is a function of the strain field at every
point in the body. This observation accords with both the experi-
ment of the phonon dispersion and the atomic theory of the lattice
dynamics [22]. According to the nonlocal elasticity theory, some
phenomena associated with atomic and molecular scales including
high frequency vibration and wave dispersion can be satisfactorily
described. This theory provides information about the forces be-
tween atoms and the internal length scale as a material parameter
is introduced into the constitutive equations. From a mathematical
aspect, the basic equations for a homogenous and nonlocal mag-
neto—electro—thermo-elastic solid with zero body force can be
expressed as
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where oy, €5, Di, Ej, Bi, and H; respectively symbolize the stress,
strain, electric displacement, electric field, magnetic induction and
magnetic field; Cjjki, €mij, Sim» qnij» dij» Sij» pi and A; denote the elastic,
piezoelectric, dielectric constants, piezomagnetic, magnetoelectric,
magnetic, pyroelectric and pyromagnetic constants, respectively;
B AT and p signal the thermal moduli, temperature change and
mass density, respectively. Furthermore, A(|x—x'\,p) denotes the
nonlocal attenuation function that incorporates into the constitu-
tive equations at the reference point x generated by the local strain
at the source x’; |x—x| is the Euclidean distance and u = eqa/l is the
scale coefficient which incorporates the small scale factor in which
ep presents a material constant determined experimentally or
approximated through matching the dispersion curves of the plane
waves with ones of the atomic lattice dynamics; a and I respectively
show the internal (e.g. lattice parameter, granular size) and
external characteristic lengths (e.g. crack length, wavelength) of the
nanostructures.

According to the Eringen's theory, the constitutive equation
presented in the spatial integral forms can be converted to the
equivalent differential constitutive equations as follows
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