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a b s t r a c t

In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular
offset of the relativistic electron beam in the second undulator section. An anlytical expression for the
undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects
of the angular offset is more severe for longer undulator lengths and with higher dispersive field
strengths.Both these effects are less pronounced for undulators with large K values.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there exists interest in optical klystron undu-
lator for synchrotron radiation sources and free electron lasers
[1–6]. The optical klystron undulator consists of two undulator
sections known as modulator and radiator separated by a drift or
dispersive section. The electrons undergo bunching leading to
energy and density modulation in the dispersive section. As a
consequence there is enhanced radiation in the radiator due to pre
bunching of the electrons and due to the interference of radiation
from the two undulator sections as well. There are several suc-
cessful experiments on FEL with optical klystron undulator con-
cept [7–12]. The issues of free electron laser with optical klystron
undulator have been addressed and reported both in symmetrical
and asymmetrical configurations. The symmetrical optical klystron
undulator consists of two undulators of identical length and K
values leading to enhanced gain due to strong interference of the
radiations from the undulators [13–17]. The asymmetrical config-
uration of the optical klystron undulator have been studied with
gain reduction [18–21]. The betatron effect in optical klystron and
effect of beam energy spread on cascade optical klystron undulator
radiation too has been discussed [22–26]. In the optical klystron , a
long drift space or a shorter dispersive magnet is placed in
between the two undulaor sections . In the long drift space case,
the electron –optical interaction is switched off by removing the
undulator field. The net changes of the electron phase i.e ξΔ is
then given by Dξ υΔ = , where D is the dimensionless time of the
drift and υ is the detuning resonance parameter. With a dispersive
magnet in between the two undulator sections the magnitude of
the field is tuned to turn off the resonance and the change of

electron phase is governed by the same relation. A requirement of
the dispersive magnet field is that both the first and second field
integral in the length of the dispersive section must be zero to
ensure zero net transverse and zero angular displacement of the
electron at the input of the second undulator section of the optical
klystron. Similar condition holds good for the long drift space case
where the electron is made to enter the second undulator without
any change in its angular or transverse displecement .

In this paper, we remove this restriction and assume that the
electron enters the second undulator under an angle (see Fig.(1a)
and (b)) . In Section 2 ,we solve the Lienard Wiechert potential
analytically in the far field limit. Results are discussed in Section 3.
It is shown that beyond a certain angle of injection of the electron
in the second undulator , the klystron type spectrum is lost.The
effects are more pronounced for longer undulator lengths and
higher dispersive field strengths. Both these effects are less pro-
nounced for undulator with large K values.

2. Optical-Klystron Undulator radiation

The brightness i.e. energy radiated per unit solid angle per unit
frequency interval is given by the Lienard–Wiechert potential [27]
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where e is the electron charge, c is the velocity of the light, ω is the
radiation frequency, r→ is the electron trajectory, n̂ is an observation

unit vector and β
→

is the normalized electron velocity. In a simple
undulator structure, the integral is done over a time from 0 to T where
the electron experiences an effective acceleration i.e T L

c z
=

β
, L is the
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undulator length. In a simple undulator structure of length L, we
consider zβ ≈ 1 under relativistic limit and T L

c
L
cz

= ≈
β

. We

assume that the electron enters the undulator magnetic field whose
on-axis field is specified by

B yB k zsin 2u u( )= ^ ( )

Bu is the peak undulator magnetic field strength, ku is the

undulator field wave number i.e ku
2

u
= π

λ
, uλ is the undulator period.

Eq. (1) is solved for the undulator field in the vertical ŷ direction as

in Eq. (2) with ẑ is the longitudinal co-ordinate. The electron
oscillations are in the xz^^ plane. For an undulator field arranged
with N periods, the interaction time is given by
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The optical klystron undulator is defined by two undulator sec-
tions separated by drift space or an dispersive section. In this case of
two identical undulators , the time integral in Eq. (1) is read as
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In Eq. (4), D is the dimensionless length of the drift section
normalized to the undulator length .Using Eq. (4), Eq. (1) can be
rewritten as
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Introducing the definitions as
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Eq. (5) is simplified to read as
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For an undulator magnetic field specified by Eq. (2), the elec-
tron trajectory is given by Lorentz force equation and is read as
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xβ , yβ are the transverse and longitudinal velocity of the
electron , z t( ) is the longitudinal electron trajectory. It is assumed
that the electron enters on axis the magnetic field of the first
undulator section, there by evaluation of the finite term in Eq. (6)
in the first section of the undulator read as
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J 0,m 1ξ( ) is the Generalized Bessel function (GBF) with
K

1
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γ Ω
. In this paper it is assumed that the second undulator

section is not tilted and the electron enters the second undulator
section under an angle xθ .The radiation is observed under this
angle (Fig. (1b)). Then electron velocity trajectory in the second
undulator section under this consideration can be written as
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The electron oscillations occur at the fundamental undulator
frequency in the transverse direction. An angular offset in the
electron motion in the transverse direction modifies the electron
longitudinal motion . The longitudinal electron velocity modula-
tion is proportional to the amplitude and oscillation of the electron
motion in the transverse direction. The terms in Eq. (6) for the
second undulator section are

Fig. 1. a. Optical klystron with perfect beam; b.optical klystron with imperfect
beam in the Radiator.
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