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a b s t r a c t

The charge-trapping effect in compound semiconductor γ-ray detectors in the presence of a uniform
electric field is commonly described by Hecht's relation. However, Hecht's relation ignores the
geometrical spread of charge carriers caused by the finite range of primary and secondary electrons
(δ-rays) in the detector. In this paper, a method based on the Shockley–Ramo theorem is developed to
calculate γ-ray induced charge pulses by taking into account the charge-trapping effect associated with
the geometrical spread of charge carriers. The method is then used to calculate the response of a planar
CdTe detector to energetic γ-rays by which the influence of electron track lengths on the γ-ray response
of the detectors is clearly shown.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Compound semiconductor detectors such as Cadmium Tell-
uride (CdTe), Cadmium Zinc Telluride (CdZnTe), Mercuric Iodide
(HgI2) and Thallium Bromide (TlBr) are of great interest for X- and
γ-ray spectroscopy applications. The attraction of these materials
for spectroscopy applications is mainly due to their high quantum
efficiency and their capability of operation at room temperature.
However, the energy resolution of these detectors is significantly
limited by the trapping of charge carriers, i.e. electrons and holes,
during their transit to the electrodes. When significant trapping
occurs for either charge carrier, the induced charge becomes a
function of the distance over which the charge carriers travel,
leading to an asymmetric photo-peak shape. In the case of uniform
electric field and negligible de-trapping, the effect of charge-
trapping is commonly described by Hecht's relation [1], in which
the induced charge as a function of interaction location is given by:
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where No is the initial number of electron–hole pairs, e is the
electric charge, v is the charge carriers' velocity, τ is the charge
carriers' lifetime, xo represents the γ-ray interaction location
measured from the cathode, d is the detector thickness, and the
e and h subscripts represent electrons and holes, respectively.
However, this relation assumes that all the charge carriers are

created at the γ-ray interaction location, while charge carriers are
actually formed along the track of the electron created by the γ-ray
interaction. Some details on the release of charge carriers along an
electron track in a semiconductor material can be found in Ref. [2].
Consequently, for γ-ray interactions with a spatial distribution of
charge carriers comparable to the mean free path of charge
carriers, Hecht's relation is unable to produce a proper estimate
of the amount of charge-trapping effect. This paper describes a
method for including the effect of the geometrical spread of
charge carriers on the induced charge pulses. The method is then
used to study the influence of electron track lengths on the γ-ray
response of the detectors.

2. Pulse-shape model

The shape of the induced pulses is calculated by using the
Shockley–Ramo theorem [3,4]. A review of the Shockley–Ramo
theorem and its application in semiconductor γ-ray detectors can
be found in Ref. [5]. The Shockley–Ramo theorem states that the
charge induced on an electrode A due to the motion of a charge
carrier from a location of zi to a location of zf is given by:

Q ¼ q½φAðziÞ�φAðzf Þ�; ð2Þ

where q is the charge on the carrier and φA is the potential that would
exist at the position of the charge carrier under the following
circumstances: the charge carrier is removed, the conductor A is kept
at unit potential, and all other conductors grounded. The potential φA
is called a weighting potential and for a planar detector is simply given
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as φA(z)¼z/d, where z is the distance from the surface of the cathode
and d is the thickness of the detector. When the charge carriers are
distributed over a distance in the detector, the induced charges by
electrons and holes are obtained by integrating Eq. (2) as:

Qe ¼
Z d

0
ρeðzÞ½φðzÞ�φðzf Þ�dz; ð3Þ

and

Qh ¼
Z d

0
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where ρ(z) denotes the charge distribution density for electrons and
holes in the direction of the uniform electric field. The φ(zf) for
electrons is unity and for holes is zero. The total induced charge is
then given by the sum of induced charges by electrons and holes,
QeþQh. Since ρ(z) varies from event to event, we first derive the
formulas of Qe and Qh for the case for which the charge carriers are
uniformly distributed over a distance in the detector. The pulse due
to a γ-ray interaction with an arbitrary distribution of charge
carriers is then obtained by dividing the detector volume into
several sufficiently thin slices in which a uniform distribution of
charge carriers can be assumed (see Fig. 1A). Starting with the pulse
formula for a uniform distribution of charge carriers, the pulse due
to the γ-ray interaction is obtained by adding up the contributions
calculated for the slices which form the electron's track.

To calculate the charge pulse due to a uniform distribution of
charge carriers, we assume that a uniformly and randomly distributed
potential trap sites exist through a detector's bulk. By ignoring the de-
trapping and charge diffusion effects, the time-dependent linear charge
distribution density ρ(t) for a thin slice of the detector is given by:
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l
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where τ is the charge carrier lifetime, n is the number of charge
carriers in the slice and l is the thickness of the slice. The positive sign
is for the charge distribution density of holes and the negative sign is
for the charge distribution density of electrons. The number of charge
carriers in the slice is obtained as ΔE/w, where ΔE is the amount of
ionization in the slice and w is the pair creation energy in the
detector. The general formula of Qe for a typical slice (Fig. 1B) is
obtained by defining two imaginary electron charge distributions, as
shown in Fig. 1C and D. These electron charge distributions begin
from the lower and upper limits of the slice and end at the surface of
the anode. The density of these charge distributions is the same as
that given by Eq. (5). By putting the electron charge distribution
density of Eq. (5) into Eq. (3) and using the relation for the drift of
electrons from their initial location, given by ze¼vet (ve is the drift

velocity of electrons), the induced charge due to the charge distribu-
tion of Fig. 1D is calculated as:
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where Zo is the distance of the charge distribution from the cathode.
Similarly, the induced charge due to the electron charge distribution
of Fig. 1C is calculated as:
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The induced charge by the electrons of the slice (Fig. 3B) is then
given by Qe(t)¼Qe1(t)�Qe2(t), while Qe1 reaches to its final value at
the time Te1, given by:

Te1 ¼
d�Z 3

ve
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; ð8Þ

and Qe2 reaches to its final value at the time Te2, given by:

Te2 ¼
d�Z 3 � l

ve

� �
: ð9Þ

To derive a formula for the charge induced by the holes of the
slice, two imaginary hole charge distributions beginning from the
upper and lower limits of the slice and ending at the surface of the
cathode are used. By putting the hole distribution density, given
by Eq. (5), into Eq. (4) and using the relation for the drift of holes
as zh¼vht (vh is the drift velocity of holes), the induced charges
Qh1(t) and Qh2(t) are calculated as:
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Qh2ðtÞ ¼
Z t

0

ne
l

� �
e

� t
τh

Z 3 �νht
d

� �
vhdt ¼

nevh
dl

� �

� τhZ 3 ð1�e
� t
τh Þ�vhτ

2
h 1�e

� t
τh 1þ t

τh

� �� �� 	
: ð11Þ

Fig. 1. Illustration of the calculation of the induced charge due to an arbitrary electron track. (A) The detector is divided into several thin slices in the direction of the electric
field. The slices are sufficiently thin to assume a uniform distribution of charge carriers in each slice. (B) A typical slice shown for the calculation of a pulse due to a uniform
charge distribution. (C) and (D) two imaginary electron charge distributions which are used to derive a general formula for the induced charge by the electrons of the slice. A
similar approach is used to derive the formula of the induced charge by the holes of the slice.
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