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a b s t r a c t

A recent paper by the author [1] derived analytical formulas for the spin decoherence rate for spin-
polarized beams in models of all-electric storage rings. This paper presents additional results for the spin
decoherence rate, due to vertical betatron oscillations. Contact is made with the work of other authors
on the subject.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A recent paper by the author [1] derived analytical formulas for
the spin coherence rate for spin-polarized beams in a homoge-
neous weak focusing electrostatic storage ring. As stated in [1],
calculations of the spin decoherence rate are of interest for the
design and analysis of experiments to detect a permanent electric
dipole moment (EDM) of spin-polarized particles circulating in
storage rings. Such formulas can serve to provide useful bench-
mark tests for numerical simulations of proposed EDM experi-
ments. The formulas can also provide insights in their own right,
for the behavior of the beam polarization in various scenarios. This
paper presents additional results to those in [1], to derive formulas
for the spin coherence rate due to vertical betatron oscillations.
Contact is made with the results in [2,3], where formulas for the
spin coherence rate due to vertical betatron oscillations in a
homogeneous weak focusing electrostatic storage ring were also
derived. The results presented here agree with those in [2,3], but
are derived under more general conditions than the assumptions
in [2,3].

The structure of this paper is as follows. The basic formalism is
presented in Section 2. Section 3 presents the analysis for bounded
vertical oscillations while Section 4 treats the case of no vertical
focusing. The spin decoherence rate is analyzed in Section 5.
Section 6 presents a brief comment on some statements in [4].
Section 7 concludes.

2. Basic formalism

Following [1], I treat a particle of mass m and charge e, with
velocity v¼ βc, Lorentz factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�β2

q
, position vector r and

momentum p. I shall set c¼1 below. The particle spin s is treated
as a unit vector and a¼ 1

2ðg�2Þ denotes the magnetic moment
anomaly. I treat an all-electric model, hence p¼ γmv. The refer-
ence orbit is a circle of radius r0. The independent variable is the
azimuth θ along the reference orbit. The transverse coordinates are
(x,z) which are radial and vertical, respectively, and the radius is
r¼ r0þx. The Hamiltonian for the orbital motion in a homoge-
neous weak focusing all-electric ring is

K ¼ �r ðH�eΦÞ2�m2�p2x �p2z
h i1=2

: ð1Þ

Here H is the total energy, Φðr; zÞ is the electrostatic potential
and the electric field is E¼ �∇Φ. We define Φ¼ 0 on the reference
orbit. Note that H¼ γmc2þeΦ. The values of parameters on the
reference orbit are denoted by a subscript “0” hence the energy
and momentum of the reference particle are H0 and p0, respec-
tively. The electric field gradient is parameterized by the field
index n, where Exp1=r1þn for z¼0. For the case n¼0 (no vertical
focusing), the potential is logarithmic eΦ¼mγ0β

2
0 lnðr=r0Þ. The

analysis below treats bounded vertical oscillations, where the field
index is n40. The potential is given by a hypergeometric function.
To the required order

eΦ¼mγ0β
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Synchrotron oscillations and rf cavities will be treated later, but
ignored for now. Hence for now the total energy H is a dynamical
invariant. The orbital equations of motion in the transverse plane
are

dx
dθ

¼ ∂K
∂px

¼ �r2
px
K

ð3aÞ

dz
dθ

¼ ∂K
∂pz

¼ �r2
pz
K

ð3bÞ

dpx
dθ

¼ �∂K
∂x

¼ r2
H�eΦ

K
∂ðeΦÞ
∂x

�K
r

ð3cÞ

dpz
dθ

¼ �∂K
∂z

¼ r2
H�eΦ

K
∂ðeΦÞ
∂z

: ð3dÞ

I set H ¼H0ð1þΔH=H0Þ. Later I shall treat synchrotron oscillations,
but for now H is invariant and so ΔH=H0 is constant.

3. Vertical oscillations

In [1], the spin decoherence rate was calculated for numerous
scenarios, mostly involving horizontal orbital motion. In this
addendum, I treat vertical betatron oscillations. The specific model
is that of free (bounded) vertical betatron oscillations. Because of
(small) transverse coupling terms in Eq. (3), of Oðz2Þ and Oðp2z Þ, the
vertical betatron oscillations drive (small amplitude) horizontal
betatron oscillations. (There are no free oscillations in the hor-
izontal plane.) Then to linear order,

dðz=r0Þ
dθ

¼ pz
p0

ð4aÞ

dðpz=p0Þ
dθ

¼ � r20
p0

H0

p0r0
H0β

2
0
nz
r20

¼ �n
z
r0

ð4bÞ

d2

dθ2
z
r0

¼ �n
z
r0
: ð4cÞ

It is well known that the small amplitude vertical betatron tune is
νz ¼

ffiffiffi
n

p
. We parameterize the vertical betatron oscillations using

an amplitude parameter z00 and an initial phase ϕz0:

z
r0

¼ z00
νz

sin ðνzθþϕz0Þ; ð5aÞ

z0 � pz
p0

¼ z00 cos ðνzθþϕz0Þ: ð5bÞ

Next we treat the horizontal motion. Note that the driven oscilla-
tions are of the second order in small quantities, i.e. x¼ Oðz020 Þ and
px ¼Oðz020 Þ. Also ΔH=H0 is restricted to be of the second order in
small quantities. The following expression is required for the
derivation below:

K2

r2
¼ ðH0þΔH�eΦÞ2�m2�p2x �p2z Cp20þ2H0ðΔH�eΦÞ

�p2z Cp20�p2z þ2p20
ΔH
H0β
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r0
�n
2
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 !
: ð6Þ

Then dx=dθCpx=p0 and
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It is well known that the small amplitude horizontal betatron tune
is νx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�β20�n

q
. Since the radial motion consists of bounded

oscillations, one must have 〈dpx=dθ〉¼ 0. We use the result
〈ðpz=p0Þ2〉¼ ν2z 〈ðz=r0ÞÞ2〉¼ n〈ðz=r0Þ2〉 below to obtain

ð2�β20�nÞ x
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Hence

x
r0

	 

¼ �1

2
p2z
p20

* +
þ2�β20

ν2xβ
2
0

ΔH
H0

: ð9Þ

Note that it was derived in [5] that the dispersion in this model is
given by Dx ¼ r0ð2�β20Þ=ν2x , so the above expression can be written
in the more informative way:

x
r0

	 

¼ �1

2
p2z
p20

* +
þ 1
β20

Dx

r0

ΔH
H0

: ð10Þ

The second term is simply the usual dispersion contribution to the
radial displacement. The first term is a driving term from the
vertical betatron oscillations. Continuing with the analysis,

eΦ
H0

	 

Cβ20

x
r0

	 

þn
2

z2

r20

* + !
¼ 2�β20

ν2x

ΔH
H0

: ð11Þ

It follows that

Δγ
γ0

	 

¼ H�eΦ

H0

	 

�1¼ 1� 2�β20

2�β20�n

 !
ΔH
H0

¼ � n
ν2x

ΔH
H0

: ð12Þ

Specializing to the case of on-energy motion ΔH=H0 ¼ 0 and using
z00 yield

Δγ
γ0

	 

¼ 0; ð13Þ

x
r0

	 

¼ �1

2
p2z
p20

* +
¼ � 〈z020 〉

2
: ð14Þ

The above expressions agree with Orlov's results derived in [2] and
[3], respectively. It is also easily verified that 〈ðΔγ=γ0Þ2〉¼ Oðz040 Þ.

The derivations of Eqs. (13) and (14) in [2] and [3] respectively
were made under the approximation of very weak vertical focus-
ing 0on⋘1. (This is also stated in [4].) The derivation in this
paper shows that such an approximation is unnecessary: no
restriction was required on the field index (other than n40, so
as to have bounded vertical oscillations). Tracking simulations
confirm that Eqs. (13) and (14) are valid for arbitrary values
0ono1. There may be a caveat that the value of νz should not
be rational, to avoid orbital resonances, to justify the statistical
averages.

It is stated in [2], that Eq. (13) is valid in the presence of rf and
synchrotron oscillations (and by extension Eq. (14) also). We can
derive this as follows. Define τ¼ t�tn where tn ¼ ðr0=v0Þθ is the
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