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a b s t r a c t

The I�ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci–
120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and
saturation current were estimated using this new approach. The saturation current was compared with
the results of the conventional method based on Boag–Wilson formula. It was verified that differences
larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that
this new approach is recommended for a more accurate estimate of the saturation current when it is not
possible to measure currents satisfying the condition I=Isat40:95. From the calibration curve the average
value of pairs of carriers created per unit volume was estimated to be equal to η¼ 8:1� 10�3 cm�3 s�1

Bq�1 and from that value it was estimated that � 17 pairs were created on average per second for each
decay of the source.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The description of the saturation characteristics of ionization
chambers operating in current mode is a very old problem in
physics which dates back to 1899, when J.J. Thomson set up the
general differential equation for the transport of ions between
parallel plates [1]. Many authors (Mie [2], Seeliger [3], Boag and
Wilson [4]), including Thomson [1], proposed approximate solu-
tions to this problem, but it was only many years later, in 1975,
that a general solution was found by Rosen and George [5] with
the only additional approximation of neglecting space charges.
This was the first solution that linked the current induced by the
motion of charges, I, with the voltage applied to the ionization
chamber, ΔV , and provided an expression to the spacial distribu-
tion of charges. Nonetheless, the relation between current and
applied voltage was found as an implicit formula of both variables
(i.e. FðI;ΔVÞ ¼ 0), which makes the procedure of data fitting by the
least squares method infeasible. Recently, Chabod [6] found a way
to write ΔV explicitly as a function of I (i.e. ΔV ¼ f ðIÞ). With this
last achievement it is now possible to fit the experimental
current–voltage curve of an ionization chamber using the exact

solution to the Thomson problem as long as some theoretical
assumptions are met. Furthermore, as far as the authors are
concerned, there is still no published experimental work that
applies this new approach in the analysis of current–voltage
curves.

In this work, the experimental current–voltage (I–ΔV) curves
of a well type ionization chamber irradiated with very intense 192Ir
sources with activities ranging from few curies to approximately
one hundred curie were fitted using the analytical formula
proposed by Chabod. This formula can be translated into a fitting
function with only two parameters, which can be related with all
the relevant physical variables of the problem: the saturation
current Isat , the recombination coefficient k, the rate of electron–
ion pair formation per unit volume N, the electron and ion
mobilities μe and μa, respectively, and the electrodes separation
distance d. As previously stressed by Chabod, this fitting procedure
paves the way for many interesting applications, such as the
measurement of the recombination coefficient k, the determina-
tion of the fraction of charges that escape recombination, the
estimate of the ionization chamber efficiency and the extrapola-
tion of the saturation current value using parts of saturation
curves.

A typical problem in the dosimetry of very intense radioactive
sources is the determination of the saturation current required in
calibration procedures of ionization chambers used as dose and
activity meters. In these cases, very high applied voltages are
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needed to achieve the saturation plateau. In practice, such high
voltages can produce sparks and hence should be avoided. In this
case, the saturation current must be extrapolated from the
recombination region of the I–ΔV curve. Old theories addressed
this problem, but they were valid only when I=Isat495%. In many
cases, the measured I–ΔV curve does not satisfy this condition and
only a valid fit of the recombination region would give a good
estimate of the saturation current. As an example of application, it
will be shown how a calibration procedure that uses the tradi-
tional extrapolation approach (e.g. Boag–Wilson formula [4]) to
determine the saturation current differs from a calibration proce-
dure that uses the exact solution. Using this method, it can be
shown that the upper limit of the activity range of ionization
chambers may be extended to higher values.

1.1. The Thomson problem

The Thomson problem is basically the set of differential
equations that describe macroscopically the transport of positive
and negative charge carriers through a gaseous medium subject to
a static electric field. It is assumed that: (i) the diffusion contribu-
tion to the charge velocities is negligible in comparison with the
electric field contribution; (ii) there is no charge multiplication by
electron impact ionization or any other ionization process; (iii)
there is only two types of charge carriers: one of them is negative
and is always an electron (ne designates the electron density); the
other one is positive and is always a singly ionized atom (na
designates the positive ion density); (iv) the charge recombination
occurs by a mechanism whose rate may be written as knane;
(v) the pair creation is caused only by the ionizing radiation and its
rate of formation per unit volume, N, is considered to be constant
all over the active volume of the detector chamber; (vi) the charge
velocities are proportional to the magnitude of the field, the
proportionality constants being the mobilities μe and μa. Consider-
ing that the problem has planar symmetry (cf. Fig. 1) and that all
the above-mentioned hypotheses are valid, plus the proper
boundary conditions, the physical variables ne, na and E can be
coupled through the continuity equations of the positive and
negative carriers and the Poisson equation

�μe
∂
∂z

neEð Þ ¼N�knena

μa
∂
∂z

naEð Þ ¼N�knena

∂
∂z

E¼ e
ε0

ðna�neÞ

neðdÞ ¼ 0; nað0Þ ¼ 0;
R d
0 EðzÞ dz¼ΔV

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where e is the elementary charge and ε0 is the vacuum permittiv-
ity. Although the above set of differential equations is apparently
simple, an analytical solution to it has not been found yet.

Fortunately, the space charge effect may be neglected in many
practical situations (i.e. the component of the field generated by
the charged electrodes prevails over the field generated by the free
carriers), and the set of equations may be simplified to

�μeE
∂
∂z

ne ¼N�knena

μaE
∂
∂z

na ¼N�knena

neðdÞ ¼ 0; nað0Þ ¼ 0; E¼ ΔV
d :

8>>>>><
>>>>>:

ð2Þ

This equation may be solved analytically to give the spacial
distribution of negative and positive charges, as shown by Rosen
and George [5]. The spacial distribution of electrons, for instance,
is given by the following formula, which will be useful later when
computing the space charge effects [6]

neðxÞ ¼
kI�K tan ðK=2eSνeνaÞðxþCÞ� �

2eSkνe
ð3Þ

where S is the electrode surface area, ve ¼ μeE and va ¼ μaE are the
electron and positive ion drift velocities, respectively, and C is an
integration constant which may be evaluated using the boundary
condition neðdÞ ¼ 0 and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kNe2S2νeνa�k2I2

q
: ð4Þ

As it was shown by Chabod [6], the following law links the voltage
ΔV to the current I:

ΔV ¼
ΔV0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�η2ΞðηÞ2

qr
ΞðηÞ when ηZβ;

ΔV0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�η2ΞðηÞ2

qr
ΞðηÞ when ηrβ:

8>>>>>>>><
>>>>>>>>:

ð5Þ

where β¼ 2=π and

η¼ I
Isat

ΔV0 ¼
d2ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
kN
μeμa

s
8>>>><
>>>>:

ð6Þ

and the function Ξ : ½0;1�-½0;π� is given by

Ξ
sin ðxÞ

x

� �
¼ x: ð7Þ

No additional assumption is made as (5) may be derived only by
simplification and rearrangement of the expression of the electron
spacial distribution [6]. As it will be shown later, expression (5)
may be set as the model function in the least squares procedure. In
general, only two variables must be assigned as adjustable para-
meters: Isat and ΔV0.

The main goal of this work is to show that Eq. (5) can provide a
good description of a real current–voltage curve as long as some
assumptions are met. It will be shown in the next section that the
experimental conditions are to a good degree of accuracy consis-
tent with the theoretical hypotheses. By no coincidence the
experimental data can be quite accurately fitted using (5); from
the adjusted parameters valuable information may be extracted
which, as mentioned before, relates with physical quantities and
may be useful in many applications.
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Fig. 1. Schematic view of a parallel plate ionization chamber.
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