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a b s t r a c t

This paper presents structure, design and implementation of a novel technique for determining the
optimal shaping, in time-domain, for spectrometers by means of a Genetic Algorithm (GA) specifically
designed for this purpose. The proposed algorithm is able to adjust automatically the coefficients for
shaping an input signal. Results of this experiment have been compared to a previous simulated
annealing algorithm. Finally, its performance and capabilities were tested using simulation data and a
real particle detector, as a scintillator.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In spectroscopy, the value of energy of incident particles can be
extracted from the peak amplitude of the input pulses coming
from particle detectors. This method is called Pulse Height
Analysis (PHA) and provides a value of energy proportional to
the incident particle energy. Thus, identical particles with the
same energy must generate identical peak values. The ability of a
given measurement to resolve fine details in the incident energy of
the radiation is improved as the width of the response function
becomes smaller. This feature is called resolution. Nowadays, this
property remains determining for all spectroscopy systems [1–4].

The resolution of these measurements is affected by noise. This
noise has a spectral density that depends on the type of detector
and the features of the spectroscopy system. To mitigate this type
of noise, spectroscopy systems have filters at the output of particle
detectors called shapers.

The shaper's effectiveness in a spectroscopy system depends on
the spectral density of noise. However, finding the optimal shaper
is a problem with multiple degrees of freedom. This fact implies

that optimal shapers should be selected using numerical and/or
iterative procedures (e.g. [3,5–8]).

This paper describes the development of an algorithm based on
a GA for providing the optimal shaping for spectroscopy systems.
The paper is structured as follows. Section 2 presents the funda-
mentals of the GA. Section 3 provides details of the GA used and
the cost functions. Section 4 presents the theoretical and experi-
mental results of this algorithm. Finally, Section 5 covers the
conclusions and the future work.

2. Genetic algorithms

In the computer science field of artificial intelligence, a GA is a
heuristic search that tries to imitate the process of natural selection
and mutations. This heuristic is used to generate useful solutions to
optimization and searching problems [9,10]. GAs belong to the larger
class of evolutionary algorithms, which generate solutions to opti-
mization problems using techniques inspired by the natural evolu-
tion, such as inheritance, mutation, selection, and crossover.

In a genetic algorithm, a population of candidate solutions (called
individuals or phenotypes) to an optimization problem is evolved
toward better solutions. Each candidate solution has a set of proper-
ties (its chromosomes or genotype) which can be mutated and
altered. Traditionally, solutions are represented as strings of informa-
tion, usually in binary format [11].
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The evolution process usually starts from a population of
randomly generated individuals. The population in each iteration
is called generation. In each generation, the fitness of every
individual in the population is evaluated; the fitness is usually
the value of the objective function in the optimization problem
being solved. The individuals best suited are stochastically selected
from the current population and selected individual's genome is
modified (recombined and possibly randomly mutated) to form a
new generation. The new generation of candidate solutions is then
used in the next iteration of the algorithm. Finally, the searching
process terminates when either a maximum number of genera-
tions have been produced or a satisfactory fitness level has been
reached for the population.

Interest in such algorithms is intense because some important
combinational optimization problems can be solved exactly in a
reasonable time.

3. Proposed genetic algorithm

A typical genetic algorithm requires (a) a cost function to
evaluate the candidate solutions and (b) chromosomic representa-
tion of the solution domain.

A combinational optimization problem is aimed at finding
among many configurations the one which minimizes a given
function which is usually referred to as the cost function. This
function is a measurement of goodness of a particular configura-
tion of parameters. The selection of an appropriate cost function is
crucial for achieving good results using this algorithm.

In this work, and in order to reduce the searching space and the
processing time, we assume that the chromosomic representation
is a monotonically increasing function until it reaches the max-
imum level, and then it follows a monotonically decreasing
function. Thus, for each individual,

I¼ x1; x2;…; xN=2 : 0rx1rx2r⋯rxN=2 ¼ 1
� � ð1Þ

where N is the shaper order. From these individuals, a symmetrical
shaper can be obtained

S¼ I; IR
n o

¼ x1; x2;…; xN=2 ¼ 1;…; x2; x1
� � ð2Þ

where IR is I reversed.
For all the considered shapers, the flat-top duration is equal to

Ts. As in [8], when flat-tops with a duration of τt clock cycles, an
additional constraint must be included with a number of ones
equal to L¼ τt=τs added in the middle of S. In this case, the new
equation is

S¼ I;1⋯1; IR
n o

¼ x1; x2;…; xN=2� L=2 ¼ 1;…; xN=2þL=2 ¼ 1;…; x2; x1
� �

ð3Þ
The shaper S works as a digital Finite Impulse Response (FIR)

filter. Thus xn are the coefficients of the FIR filter.
Once both genotype and phenotype are defined, a GA proceeds

to initialize a population of shapers, and then to improve it
through repetitive application of the mutation, crossover and
selection operators according to a cost function. Thus, in order to
get an optimal shaper, the following steps are to be taken:

1. Establish the sampling period Ts of the input signal, the
maximum shaping time τmax and the maximum shaper order
Nmax. The relationship among these parameters is

Nmax ¼
τmax

Ts
ð4Þ

2. Establish the number of generations G (i.e. iterations), the
population P for each generation and the cost function. If

mutations are desired, set pm (probability of mutation) and Sn
mutation maximum value.

3. Create a population of P shapers. Each shaper shall have a
random integer N where NA ½1;Nmax� to try different values of
shaping time.

4. For each generation:
(a) Generate a new population based on the crossover

between the set that had got the best score (based on the
cost function) in the present population. For this algorithm,
the crossover is given by the following equation:

Inew ¼ φI1þð1�φÞI2
maxðφI1þð1�φÞI2Þ

ð5Þ

where I1 and I2 are two individuals Inew the resulting
individual from the crossover and φA ½0;1� is a real number
to set the weight of I1 and I2 proportional to the score of
both individuals according to the following equation:

φ¼ scoreðI1Þ
scoreðI1ÞþscoreðI2Þ

ð6Þ

(b) Include within the population the individual of the past
generation that get the best score.

(c) For each value of Inew, add mutations randomly with a
probability pm. If a mutation occurs, the new value of
xnAInew is now equal to ~xn in this way

~xn ¼ xnþχSn ð7Þ
where χA ½�1;1� is a real random number.

(d) Generate a shaper S for each individual I (see Eq. (2)) and
test it.

(e) Evaluate S according to a cost function previously selected
(see Section 3.1). Assign a score to each shaper based on the
evaluation.

5. At the end of the process, the optimal shaper will be the final
best shaper.

In specific environments, it can be interesting the execution of
this algorithm at a certain intervals. For instance, in space systems,
the GA could be executed at regular intervals to counter the effects
of radiation damages as was proposed in [12].

3.1. Cost functions

In this work, the cost function used for simulation experiments
(Section 4.1) is the Equivalent Noise Charge (ENC), calculated using
the noise indices [13], whereas for real test, the cost function is the
Signal/Noise Ratio (SNR). In the experimental tests (Section 4.2),
the Full Width at Half Maximum (FWHM), as a percentage, was
used to measure the quality of the final shaper, but it has not been
used as a cost function due to the enormous burden of calculation
and time taken to generate a histogram for each individual in the
population.

3.1.1. ENC
To evaluate the results of simulation experiments, noise

indexes have been used as a cost function. Noise indexes in analog
domain were introduced by Goulding in [13]. The noise indexes,
calculated in time-domain, are inversely proportional to the SNR,
and they can be used to calculate the ENC [14]. This noise analysis
is valid for any detector/preamplifier/analog filtering/ADC/PHA
combination.

The noise indexes for serial (white) noise N2
Δ, parallel (red or

brownian) noise N2
S and 1/f series (pink) noise N2

F were adapted to
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