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In the study, we demonstrate the implementation of the “bootstrap” method for a reliable estimation of
the statistical error in Neutron Multiplicity Counting (NMC) on plutonium samples.

The “bootstrap” method estimates the variance of a measurement through a re-sampling process, in
which a large number of pseudo-samples are generated, from which the so-called bootstrap distribution
is generated. The outline of the present study is to give a full description of the bootstrapping procedure,
and to validate, through experimental results, the reliability of the estimated variance. Results indicate
both a very good agreement between the measured variance and the variance obtained through the
bootstrap method, and a robustness of the method with respect to the duration of the measurement and
the bootstrap parameters.

© 2015 Elsevier B.V. All rights reserved.

1. Preliminaries
1.1. Introduction

Fissile mass estimation using passive neutron interrogation
relies on counting neutrons arriving from a sample containing a
spontaneous fissile material to a set of (typically >He) detectors.
There is growing interest in passive neutron interrogation, due to
its high performance on measuring samples containing 2°Pu, such
as MOX fuel. To separate between the main fission source and
additional neutron sources (mainly (o, n) reactions and induced
fissions in fissionable isotopes in the sample), higher moments of
the detected neutrons are analyzed, making use of the fact that the
different neutron sources have a very different statistical nature.
Such general considerations are known as neutron multiplicity
counting (NMC, also referred to as time correlation analysis — TCA,
or coincidence counting), and are considered a standard procedure
in both the safeguards and safety communities. Because imple-
mentation of NMC methods requires sampling the third moment
of a distribution, a straightforward estimation of the variance
requires sampling the 6th moment of the distribution, suggesting
a very high uncertainty.

In the present study, we further develop the application of the
bootstrap method to estimate the random variance in mass
estimation in NMC measurements. The idea of implementing the
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bootstrapping method on NMC was (to the best of our knowledge)
originally introduced in [1] and further developed [2]. The boot-
strap was implemented on actual measured data in [3], but on a
very limited data set (a single measurement). In both [1] and [2]
the main emphasis was not on the bootstrap; in [1] the main effort
was on analytic expressions for the second and third reduced
sample moments, and [2] was a more general discussion on the
possible advantages of the LIST-mode data acquisition machinery
(rather than the traditional shift register machinery), and many
important points regarding the bootstrap method were not dis-
cussed. In particular, the aim of the present study is to further
extend the work introduced in [1,2] in two aspects:

1. A more detailed definition of the bootstrapping procedure; in
particular, the characteristic time scale of the shuffled intervals,
and the number of re-samples needed will be discussed.

2. Validation of the method through experimental results.

The paper is arranged in the following manner: In the remain-
ing of the present section we give the motivation for this study. In
Section 2, we give a general introduction to the bootstrap method.
In Section 3 we discuss the implementation of the bootstrap
method on NMC. Section 4 is devoted to experimental results,
and in Section 5 we conclude.

1.2. Motivation

Estimating the random variance of in NMC measurements is of
utmost importance in estimating the reliability of a detection
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system. Naturally, the measurement variance has been studied
before, and there are several publications regarding both the
estimation [1,6,7] and the optimization [8,9] of the measurement
variance. The emphasis in previous works is mainly on analytic
expressions for the random variance, and the bootstrap method
(or any other re-sampling method) was somewhat neglected. On
the other hand, we find that the bootstrapping method has several
appealing features:

1. Simplicity: the method, as we demonstrate, is very straightfor-
ward. The implementation is simple and does not demand any
special apparatus or any complex computations. The only
demand is the data that is recorded using a LIST-mode
acquisition machinery [11].

2. Robustness: The random variance of the mass estimation
depends on several parameters, depending on the measure-
ment system (such as the detection efficiency), the tested
sample (mass and leakage multiplication) and user defined
parameters (gate width and measurement time). The present
method is, in a sense, “blind” to all these parameters. The
random variance is estimated directly through the bootstrap
distribution of the mass, and no calibration is needed. It should
be clear, however, that systematic errors related to the different
parameters are not estimated using this method.

3. Applicability for all NMC methods: In addition to the well-
studied multiplicity method [10], in the recent years two new
methods were introduced: the random trigger interval (RTI)
[12] and the skewness-variance-mean (SVM) [13]. In the
present study, although the bootstrap distribution is evaluated
for the mass, the data manipulation is done directly on the
detection signal, regardless of the method used to evaluate the
mass. Therefore, the method can be applied to all three
methods (or any future method).

It should be stated that the bootstrap has one inherent flaw: Error
approximation can only be done after the measurement is done.
Thus, it is hard to pre-determine the measurement duration
needed to obtain a certain statistical error using the bootstrap
method. As stated, from a technical point of view, implementation
of the method presented in this study has a single requirement:
data recording must be through a LIST-mode data acquisition
machinery, recording the time stamps of all the neutron
detections.

2. Bootstrapping: the basic idea

The boot strapping procedure, introduced in [14], is aimed to
determine the statistical variance of any estimator of the sampled
data, by means of re-sampling from the data itself. To properly
understand the bootstrap method, we need to define two basic
notations:

® The original sample — the database, obtained from the measure-
ment, that is available for statistical analysis.

® The original population — the data set from which the original
sample was drawn.

Ideally, statistical uncertainty could be calculated by drawing
many equally sized samples from the original population. This is
of course not practical - statistical uncertainty estimation should
be based on a single measurement, not on many repeated
measurements.

The bootstrap method for statistical uncertainty estimation is
based on the Re-sampling concept - stating that the original
sample represents the population from which it was drawn.

Therefore, re-samples from the original sample should be equiva-
lent to many samples taken from the original population. Boot-
strapping a desired statistical variable is done by building its
bootstrap distribution — drawing many of re-samples, with repla-
cements, from the original sample, and evaluating the estimators
for each re-sample. This will create the so-called bootstrap
distribution. The standard deviation of the bootstrap distribution
is then an estimator for the statistical uncertainty of the
estimated value.

Bootstrap distributions
variation:

include two sources of random

1. Drawing the original sample at random from the original
population.
2. Drawing re-samples at random from the original sample.

For an original sample that is large enough and re-sampled many
times (hundreds or more), the random re-sampling adds very little
variation compared to the variation due to the random choice of
the original sample from the original population [5,4].

One can apply two basic criteria for checking if the re-sampling
process is reliable and properly mimics the shape and spread of
the original population. The first criterion - the bootstrap dis-
tribution approaches Gaussian distribution as the number of re-
samples increases. The second criterion - the bootstrap distribu-
tion is unbiased, that is the mean of the bootstrap distribution
minus the statistic of the original data is small.

3. Implementing bootstrap analysis for neutron multiplicity
counting

To implement the bootstrap method on neutron multiplicity
counting, we must first ask how do we define the original
population? Clearly, the original sample must be the measurement
taken. Thus, a good definition for the original population would be
an infinitely long measurement. Clearly, obtaining an infinitely
long measurement is not possible. But this dose not pose any real
issues for two reasons: first, whenever statistical estimations are
done, this means that the full distribution is not viable. Second,
once the statistical error is sufficiently small (say, smaller than our
measurement capabilities), the measurement may be considered
“infinitely long”. Thus, the term infinitely long may be replaced by
sufficiently long.

But even when both the original sample and the original
population are defined, it is still not obvious how the re-
sampling process should be done. When measuring, for instance,
the average height of a population, both the original population
and the original sample are constructed of individuals, and the re-
sampling is done by creating permutation of the individuals in the
sampled population.

The bootstrapping procedure suggested in [2], which is also
adopted in the present study, is as follows: Assume that the
measurement was taken in the time interval Z =[0, T], and let
T,= %T,
denote N+1 intermediate times points. To implement bootstrap
analysis, we divide the original measurement to N sub-measure-
ments, where the [th sub-measurement is defined as the original
measurement between times Z, =[T,_1,T;), #=1...N. The dura-
tion L will be referred to as the bootstrap gate (The bootstrap
procedure presented in [1] is not exactly the same as the present
one; In [1], re-sampling was done directly on the counts and not
on the original data. In particular, the bootstrap gate was equal to
the multiplicity gate, since access to LIST-mode data was not

[=0...N (1
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