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Axial buckling behavior of single-layered membranes from vertically aligned single-walled carbon
nanotubes is studied in the context of the nonlocal continuum theory of Eringen. To this end, useful
discrete models based on the nonlocal Rayleigh, Timoshenko, and higher-order beam theories are
developed to evaluate critical buckling loads associated with both in-plane and out-of-plane buckling
modes. In discrete models, the size of the eigenvalue equations to be solved drastically magnifies for
highly populated membranes. Thereby, development of models whose computational efforts do not
affected by the population of the membrane is of great advantageous. To bridge this scientific gap,
appropriate nonlocal continuous models are established based on the developed discrete models. The
accuracy of the proposed discrete and continuous models is checked and remarkable results are ach-
ieved. Subsequently, the roles of the influential factors on both in-plane and out-of-plane axial buckling
loads are addressed. The obtained results can be regarded as a basic step in examining of axial buckling
mechanisms of more complex systems consist of multi-layered membranes from parallel or even

nanotubes orthogonal single-walled carbon nanotubes.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery of carbon nanotubes (CNTs), they have been
increasingly paid attention to by scientific communities due to their
exceptional physical and mechanical properties. Single-walled
carbon nanotubes (SWCNTs) are tubes of graphene with a single
cylindrical wall. In the process of synthesis, membranes, forests or
jungles of CNTs can be produced. In each of these nanosystems,
each nanotube tightly interacts with its neighboring tubes due to
existing van der Waals (vdW) forces. The vdW force is the main
agent of the self-assemblage of physical structures comprising in-
dividual CNTs. Essentially, the stability and vibration of such a
group of CNTs depends on the aspect ratio of individual CNTs,
radius of CNTs, chirality, intertube distance, and configuration of
individual CNTs with respect to each other. The ensembles of CNTs
are expected to be building blocks of the upcoming nano-/micro-
electromechanical systems (NEMS/MEMS) [1—4]. On the hand,
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stability control of such systems is a vital stage in the mechanical
design process. To ensure regarding the safe transfer of the exerted
loads on these nanosystems, the buckling of its constituents,
particularly ensembles of CNTs, should be realized in advance. To
achieve this goal, axial load-bearing capacity of a membrane of
vertically aligned SWCNTs is aimed to be examined. The vertically
aligned membranes of our interest are tightly closed parallel-in-
plane tubes.

In order to capture accurate buckling behavior of CNTs, mo-
lecular mechanics approach is a good choice. For example,
atomistic-based models have been implemented to examine axial
buckling [5—9], torsional buckling [10—12], bending buckling
[13,14], and their postbuckling analyses [15,16]. However, such
methods would take a lot of labor and time. To overcome such
drawbacks, appropriate continuum models have been developed.
Using continuum-based models, load bearing capacity of CNTs
has been investigated from various points including axial buck-
ling [17—22], bending buckling [23,24], thermoelastic buckling
[25—30], torsional buckling [10,31—35], and combined torsion
and axial load [36]. The postbuckling behavior of CNTs has
attracted the attention of nanotechnology scientists during the
past decade [37,38]. Several of these works [17,18,29,32,33,36,38]
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are based on the classical theory of elasticity which cannot cap-
ture the inter-atomic bonds. In order to include such an impor-
tant issue in the formulations of the problem, several advanced
continuum theories have been developed in the last century.
These are also called size-dependent models. The nonlocal con-
tinuum field theory of Eringen [39—43] is one of the most suc-
cessful theories that have been broadly applied in vibration
behavior [44—58] and buckling analyses [19—-21,27,28,30,31] of
nanobeams, nanoplates, CNTs, and their ensembles. In this the-
ory, the size-dependency is incorporated into the equations of
motion via a so-called small-scale parameter. Commonly, this
factor is determined by justification of the predicted dispersion
curves by the nonlocal model and those of an atomic approach.
The magnitude of the small-scale parameter depends on the
chirality, end conditions, and aspect ratio of the CNTs [59].
Additionally, elastic modulus of two-dimensional single crystal
bodies [60] and uniaxial buckling of beams with nanocoatings
[61] have been examined using other continuum-based models
accounting for the inter-atomic forces.

The previous studies were restricted to buckling analysis of just
an individual SWCNT or multi-walled CNTs where the CNTs are
concentric. Buckling of doubly parallel nanotubes has been recently
investigated by Murmu and adhikari [62] using nonlocal Euler-
Bernoulli beam theory. To study the problem for a more general
configuration, Kiani [63] investigated axial buckling of an ensemble
consists of vertically aligned SWCNTs in two orthogonal directions.
In the performed study, nonlocal Euler-Bernoulli beam model was
exploited, and in the case of membrane of SWCNTSs, only in-plane
interactional van der Waals (vdW) forces were considered. How-
ever, a recent study [56] showed that for more accurate prediction
of vibrations of SWCNTSs, the effects of both in-plane and out-of-
plane vdW forces should be taken into account. Such a new
insight to the physical nature of the problem is the basic motivation
of the present work. Herein, axial buckling behavior of single-
layered two-dimensional (2D) membranes made of SWCNTSs is
going to be investigated. Using nonlocal shear deformable beam
models, useful discrete and continuous models are developed to
examine both in-plane and out-of-plane buckling behaviors of the
nanosystem. The explicit expressions of the axial buckling loads are
derived. The efficiency of the proposed continuous models is dis-
played and the roles of influential factors on both in-plane and out-
of-plane buckling loads are explained in some detail. The obtained
results in the present work would be very helpful in the design and
mechanical analysis of the upcoming NEMS based on the multi-
layered membranes of SWCNTs.

is d, the length of SWCNTs is equal to I, and each nanotube in-
teracts with its neighboring tubes by the in-plane and out-of-
plane vdW forces. The transverse components of the interac-
tional vdW forces between two adjacent tubes due to their
transverse vibrations, for instance tubes 1 and 2, are calculated by:
AF,=CyAV and AF,=C,,AW where AV=V;-V, and
AW = W — W, in order denote the discrepancies between the in-
plane and out-of-plane displacements of the considered tubes, Cyy
and C,; represent their corresponding coefficients of the vdwW
force [56]. As it is seen in Fig. 1(b), the roles of these constants in
vibration of the nanosystem are exactly identical to in-plane and
out-of-plane continuous springs whose constants are C,; and C,y,
respectively. The main assumptions in deriving these constants
are: (i) the exerted vdW forces are uniformly exerted on each tube,
(ii) only small transverse displacements are of concern. For a large
deformation regime (for example when postbukling behavior of
the nanosystem is of interest), the effects of higher-order dis-
placements may become important and generally, cannot be
ignored.

In continuum-based modeling of SWCNTSs, each tube is modeled
by an isotropic hollow circular cylindrical solid whose length and
mean radius are identical to the length and radius of the parent
SWCNT. Commonly, this is called equivalent continuum structure
(ECS) and its wall's thickness is t, = 0.34 nm. In fact, the geometry
data of the ECS is chosen such that leads to the best correspondence
between the dominant longitudinal, torsional, and flexural fre-
quencies of the ECS and those of the parent SWCNT [64]. Since
transverse vibrations of the membranes of vertically aligned
SWCNTs are of particular interest, the equations of motion are
established based on the appropriate beam models. In the present
study, nonlocal Rayleigh beam theory (NRBT), nonlocal Timo-
shenko beam theory (NTBT), and nonlocal higher-order beam
theory (NHOBT) are implemented for both discrete and continuous
modeling of the nanosystem.

3. Buckling analysis of membranes from SWCNTs via discrete
models

3.1. A discrete model on the basis of the NRBT

3.1.1. Nonlocal governing equations

Using Rayleigh beam model in the framework of the nonlocal
continuum theory of Eringen, the elastic strain energy of the
considered membrane, UR, is given by:
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2. Assumptions and description of the problem

Consider a membrane of N, vertically aligned SWCNTs in the
vicinity of each other as shown in Fig. 1(a). The intertube distance

where &, (Mp! ), and (M )® in order denote the Kronecker delta
and the nonlocal bending moments of the ith nanotube about the y
and z axes based on the NRBT. Using nonlocal continuum theory of



Download English Version:

https://daneshyari.com/en/article/817282

Download Persian Version:

https://daneshyari.com/article/817282

Daneshyari.com


https://daneshyari.com/en/article/817282
https://daneshyari.com/article/817282
https://daneshyari.com

