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a b s t r a c t

Gamma imaging systems are often based on monolithic scintillators coupled to a light detector through a
certain number of light guides, like glass or grease. In order to predict and optimize gamma camera
performance in terms of bias and spatial resolution, accurate Monte Carlo simulations are usually carried
out. These kind of simulations require high computational time so only a small number of arrangements
are investigated. In this work we propose a mathematical model of scintillation light propagation
starting from the gamma interaction point to the detector surface. This model gives the expression for
the radial photon density distribution with a computational time 4 order of magnitude shorter than a
Monte Carlo simulation. The model has been validated with standard Monte Carlo simulations of five
system configurations, showing a percentage error on the quantitative evaluation of photon number
lower than 2%.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In gamma rays imaging applications (like SPECT and PET) the
typical detector is a scintillation crystal coupled, through a light guide,
to a photodetector system [1–3]. In order to estimate the interaction
position of each single gamma ray within the crystal, the photode-
tector system must sample the scintillation photon distribution in
different points of the detection area. Performance and cost of a
gamma camera mainly depend on the features of the photodetector
and on the combination of characteristics of the other components
such as type and width of the crystal, number, type and width of the
light guides, etc. [4]. Accurate and reliable simulations of such optical
systems are typically performed by Monte Carlo simulations [5–8].
However, the computational requirements are very high and calcula-
tions can be very time consuming and the investigation of large
number of types of optical systems is often unpractical. Therefore
different approaches are required for the design and engineering of a
gamma camera.

Starting from a previous work [9], in this paper we report on a
mathematical model, based on geometrical optics laws. Our model
describes a radial scintillation light distribution on the detection sur-
face in the case of a continuous scintillation crystal coupled thro-

ugh an arbitrary number of light guides to the detector. Such model
performs a fast evaluation of the Point Spread Function (PSF)
distribution for different depths of interaction (DOI) of the gamma
photons, different materials and geometrical characteristics of the
crystal and of the light guides, allowing a faster evaluation of the
corresponding performance. The proposed model provides the light
distribution on the detector surface in terms of optical photon density.
Therefore we can predict the number of detected optical photons.
Simpler models of light distributions were found by [10,11] but they
do not take into account the light reflection and the refraction effects
with the interfaces.

After the photon density evaluation on the detector surface, the
effect of finite statistics of scintillation photons from the modelled
distribution has been considered, obtaining their final random coor-
dinates in agreement with those of a Monte Carlo simulation, with a
computational time, for the proposed cases, four order of magnitude
shorter than a Monte Carlo simulation with the same number of
scintillation events. For a more complex system, or for a greater
number of events, the difference in terms of computational time bet-
ween a Monte Carlo simulation and the proposed model will be
greater. In order to validate the model, the computed light distribu-
tions have been compared with light distributions obtained from acc-
urate GEANT4 Monte Carlo simulations [12–14] for five system
configurations. The results demonstrate a good agreement. Finally,
the use of estimation methods of scintillation position applied to
model data, rather than simulated data [15,16], leads to a low
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computational time performance evaluation of the crystal/light
guides/photo-detector system in terms of linearity and intrinsic spatial
resolution.

2. Model of light propagation in the crystal

In order to study mathematically the propagation of scintilla-
tion light in a gamma camera several assumptions were made:

� Isotropic scintillation at an exact point of the crystal (at a given
DOI, therefore) is assumed.

� Top and bottom surfaces of the crystal are considered perfectly
polished in order to take into account only Snell–Descartes
reflections and refractions [17].

� Absence of interference of the scintillation light is assumed.
� Monochromatic scintillation light is assumed (absence of

chromatic dispersion phenomena).
� Edge walls of crystal and of optical guides are considered totally

absorbing or very far from the scintillation point.

The last assumption has been made in order to find a simple radial
model of light distribution on the detection surface. In fact if we
considered reflections on the edge walls of the system, the circular
symmetry of the light distribution would be broken. In Section 5,
we will explain how to take into account reflection effects on the
edge walls by using the found radial model. All the assumptions
apply throughout this work. The reflectance (and transmittance)
to the crystal glass (on the bottom face) is considered independent
of the angle of incidence of light initially in this section, so that we
can find a simple closed-form expression for the light intensity as
showed in Eq. (3). For the evaluation of the radial light profile
on the surface of the detector, the dependence of the reflectance
(and transmittance) from the angle of incidence of light will be
considered (Sections 3 and 4).

According to Lambert law (Eq. (1)), the intensity of the light pro-
duced by a point source on a surface is proportional to the cosine of
the angle of incidence of light ray with respect to the normal to the
surface (θ), and is inversely proportional to the square of the distance
from the source (r):

IðθÞ ¼ Pst
cosθ
r2

e� r=λ1 ð1Þ

In Eq. (1) the coefficient Pst represents the power radiated per unit
solid angle. The exponential factor has been added to consider the
scintillation light self-absorption in the crystal (λ1 is the path length in
the crystal). This formula can be rewritten as a function of the distance
of the point source from the bottom of the crystal (h) and of the radial
coordinate on the analyzed surface (x). Ic(x) represents the light
intensity radial profile on the bottom of the crystal

IcðxÞ ¼
Pst � e�ð

ffiffiffiffiffiffiffiffiffiffiffi
x2 þh2

p
Þ=λ1

h2 1þ x
h

� �2
� �3=2 ð2Þ

Considering the upper interface of the crystal (see Fig. 1), the
formula of the intensity must take account of all possible multiple
reflections of light that contribute in the point x. In this case, the
expression becomes the following:

IcðxÞ ¼ Pst

X1
n ¼ 0

ðRbottomRtopÞn � e�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þð2nlþhÞ2

p
Þ=λ1

ð2nlþhÞ2 1þ x
2nlþh

� �2
" #3=2

þ Pst

Rbottom

X1
n ¼ 1

ðRbottomRtopÞn � e�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þð2nl�hÞ2

p
Þ=λ1

ð2nl�hÞ2 1þ x
2nl�h

� �2
� �3=2 : ð3Þ

In Eq. (3) each contribution of the summations is similar to Eq. (2)
with h substituted for ð2nlþhÞ or ð2nl�hÞ, as the specular Snell
reflection can be modelled by placing a virtual source farther from the
bottom surface of the crystal than the real source without considering
the presence of the top surface of the crystal. The virtual source
distance from the bottom surface of the crystal is chosen to assure the
equality of the optical lengths travelled by the real source reflected
light and the virtual source light. The first summation refers to
contributions due to an even number of reflections with the upper
and lower interface (the contribution of the direct light is considered
with n¼0), while the second takes into account contributions in
which the light is reflected an odd number of times. We define the
bottom surface of the crystal as the closer crystal face to the detector,
while the top of the crystal is the farther face from the detector.Rbottom

andRtop respectively represent the reflectance on the top and bottom
surface of the crystal. l is the thickness of the crystal and n is the index
of summation that distinguishes the various contributions of the
reflected light.

Eq. (3) can be approximated by the direct light contribution and by
the first N light reflection contributions. Normally it is well approxi-
mated by the first terms of each sum. Therefore we get

IcðxÞ ¼ Pst � e�ð
ffiffiffiffiffiffiffiffiffiffiffi
x2 þh2

p
Þ=λ1

h2 1þ x
h

� �2
� �3=2

þPst �Rtop � e�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þð2l�hÞ2

p
Þ=λ1

ð2l�hÞ2 1þ x
2l�h

� �2
� �3=2 : ð4Þ

The scintillation process happens in a short period of time,
therefore we can express all the light intensities (I) in terms of
photon number densities (N ), substituting Pst for Nst. Nst is the
average number of photons radiated per unit solid angle during
the scintillation process. It can be expressed as

Nst ¼
Eg � LY
4π

; ð5Þ

where Eg is the gamma ray energy and LY is the light yield of the
scintillator.

3. Model of light propagation with one optical guide

In Section 2 the functional dependence of light radial distribution
on the bottom of the crystal, before it is transmitted over the crystal-
light guide interface, was found. To obtain the radial light distribution
on the detection surface placed at the end of a single light guide, a
numerical analysis was performed. It is based on a more accurate
model than the one adopted in the previous section. The transition to

Fig. 1. Most significant contributions of the light (direct light and once reflected
light) within the scintillator that reach the bottom face of the crystal to be
forwarded to the next material.
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