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a b s t r a c t

Drift tube chambers are used for high resolution position measurements of charged particles in high
energy physics. In the case of track reconstruction in two dimensions, for given geometry of a calibrated
drift tube chamber, its output can be translated to a collection of triples, each one containing the
coordinates of the wire of the drift tube crossed by a particle and the distance of the closest approach of
a particle to the wire. The distance of the closest approach defines a drift circle which has the center at
the wire and the radius equal to the distance of the closest approach. To reconstruct a linear segment of a
track, a common tangent must be found to drift circles associated with that single track. In the study it is
shown that this problem can be solved analytically.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Particle detectors are indispensable in any experiment in high
energy physics. Modern detectors are usually designed as sam-
pling detectors—the volume of a detector is filled with devices
recording events related to particles crossing the device. The
actual physical phenomena which underlay the functioning of
such a device can be for example an excitation in a solid-state
detector, a primary ionization in a gaseous chamber or an energy
deposition in a sensitive volume of a calorimeter.

Among other types of detectors are drift tube chambers used
for high resolution position measurements of charged particles.
The drift tube chambers are build of individual drift tubes filled
with a gas mixture. The actual composition of the mixture
influences the properties of the detector. An individual drift tube
is a metallic cathode cylinder and an anode wire at the center of
the cylinder. A charged particle crossing the tube ionizes the gas
along its path. One may distinguish between primary ionization
caused by the fast particle crossing the drift tube and secondary
ionization caused by the ionization electrons. The ionization
electrons drift towards the wire, where they are amplified in
avalanches and collected. Then the electronics of the detector
records the pulse from the anode and assigns to this event the
coordinates of the centre of the drift tube. Additional quantities
can be also measured, among them the drift time which is the
time interval between the anode wire pulse and some trig-
ger pulse.

The length of the drift time can be used to determine the
distance of the closest approach of a particle to the anode wire. For
this purpose, a calibration formula must be found which relates
the drift time of the electrons to the distance between the
particle’s track and the anode wire. Numerous effects lead to a
non-linear drift-time–drift distance relation, and the spatial reso-
lution depends on the distance of the closest approach of the
particle to the wire. Given the distance of the closest approach,
each drift tube signal can be depicted as a drift circle with the
center at the anode wire. For a single track passing through the
chamber a particle’s track is just the common tangent to a
collection of drift circles recorded in all layers of the drift chamber
detector (Fig. 1). Comprehensive description of the topic of particle
detection in drift chambers can be found in Ref. [1].

The problem of finding the common tangent to a set of circles is
of vital importance for accurate reconstruction of particles in
experiments of high energy physics. Besides being accurate, an
algorithm for track fitting should be also fast. Global methods for
track fitting use all collected data to find track parameters. Among
these methods are the ones based on Hough transform [2] and
Legendre transform [3]. Both methods use the collected data to
construct histograms in some parameter space. Then the maxima
of the histograms define the trajectories in the physical space. In
contrast to the Hough transform, the drift time measurement is
directly used in the Legendre transform-based method for deter-
mining the tangent common to a set of drift circles. Because
histogramming is performed in a digitized parameter space, none
of the aforementioned methods achieves the accuracy of an
approach based on the straightforward least squares formulation
of the problem (e.g. [4–7]). According to this formulation
(described in detail in the next section) in an ideal case the
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distance of the closest approach of a particle to the anode wire
should be equal to the radius of the drift circle. Consequently, the
problem of determining the unknown parameters of the linear
segment of a particle’s trajectory can be reduced to a problem of
finding minimum of some objective function. Yet another
approach to the problem of common tangent fitting is based on
the method of Kalman filter [8]. Frequently, Kalman filtering is an
intermediate step within some combinatorial framework designed
to find acceptable continuations of already found track parts [9].

All aforementioned methods require substantial numerical
work. In the present paper it is shown that the problem of fitting
the linear segment to drift tube data can be solved analytically.
Closed form formulas are given for the solution. An appropriate
heuristic is proposed to translate the least squares problem to a
problem which can be tackled analytically.

2. Description of the method

In the case of drift tubes the input data for the particle tracking
module has a form of triples {Xi,Zi,Ri}:i¼1…N, where (Xi,Zi) is the
center of the ith tube (an anode wire) crossed by a particle, and Ri
is the distance of the closest approach of the particle to the wire of
the ith drift tube (Ri is determined from the measurement of the
drift time t, based on the R–t calibration curve). For a linear
segment of a particle track the task is to find a straight line L :
x¼ AzþB which for each i passes at distance Ri from (Xi,Zi). The
distance di of (Xi,Zi) from L is equal to:

di ¼
AZiþB�Xi
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þA2
p ð1Þ

The problem of determining the slope A and intercept B of L can
be formulated as the problem of minimizing the sum of squares S
(A,B) of the difference between Ri and di:

SðA;BÞ ¼
XN
i ¼ 1

AZiþB�Xi
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þA2
p �Ri

 !2

: ð2Þ

Obviously, A and B can be found from the requirement that the
partial derivatives of S(A,B) with respect to A and B are equal to
zero. While numerical solution of this problem is straightforward,
it appears that finding the analytical solution is a harder problem
because derivatives of S(A,B) cannot be computed analytically if
the signs of the differences AZiþB�Xi are not known, and these
signs are not known because A and B are not known.

In fact it means that an appropriate heuristics is necessary
which will assign the centers of the drift tubes (Xi,Zi) to either right
or left sides of L. Below such a heuristic method is proposed and it
is shown how it can be used for the analytical solution of the least
squares problem of interest. The quality of the heuristics-based
analytical solution is compared to the numerical solution in the
next section.

To effectively solve the problem of finding analytically the slope
A and the intercept B, an appropriate method to determine the
signs of AZiþB�Xi in Eq. (2) must be provided. The proposed
heuristics finds the heuristic straight line H which fits best to the
measurement points {Xi,Zi,Ri}:i¼1…N, where the drift radii Ri are
identified with the measurement errors. Thus, the problem is
reduced to finding the minimum of a heuristic function SH(AH,BH)
with the respect to the slope AH and the intercept BH of the
heuristic straight line H : x¼ AHzþBH:

SHðAH ;BHÞ ¼
XN
i ¼ 1

AHZiþBH�Xi

Ri

� �2

: ð3Þ

The problem of finding AH and BH can be further reduced to a
system of two linear equations:

XN
i ¼ 1

Z2
i

R2
i

XN
i ¼ 1

Zi

R2
iXN

i ¼ 1

Zi

R2
i

XN
i ¼ 1

1

R2
i

0
BBBBB@

1
CCCCCA

AH

BH

 !
¼

XN
i ¼ 1

XiZi

R2
iXN

i ¼ 1

Xi

R2
i

0
BBBBB@

1
CCCCCA ð4Þ

Given AH and BH one computes ΔH
i as

ΔH
i ¼ AHZiþBH�Xi: ð5Þ

Based on the sign of ΔH
i the measurement points {Xi,Zi,Ri} will

be assigned to either left or right side of the common tangent L.
The heuristic line H is used to split the set of measurement

points {Xi,Zi,Ri}:i¼1…N into two separate classes: one on the left
and one on the right side of L. In particular, assuming that the sign
of ΔH

i is the same as the sign of Δi ¼ AZiþB�Xi(the quality of this
assumption is tested in the next section), the equation for S(A,B)
has the form:

SðA; BÞ ¼
X

AZm þB�Xm 40

Δmffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p �Rm

 !2

þ
X

AZk þB�Xk o0

Δkffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p þRk

 !2

;

ð6Þ

If one sets Rio0 for all ΔH
i o0 then the expression for S(A,B)

becomes

SðA;BÞ ¼
XN
i ¼ 1

AZiþB�Xiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p �Ri

 !2

: ð7Þ

Given Eq. (7) we can compute B from the condition
∂SðA;BÞ=∂B¼ 0:

B¼
PN

i ¼ 1 Xiþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p PN
i ¼ 1 Ri�A

PN
i ¼ 1 Zi

N
: ð8Þ

From ∂SðA;BÞ=∂A¼ 0 we get

XN
i ¼ 1

Δi�Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

q� �
ZiþAXi�ABð Þ ¼ 0: ð9Þ

x 

z 

Fig. 1. The problem of fitting a common tangent to a set of circles. Solid circles are
the drift tubes, circles filled with gray color are drift tubes crossed by linear
segment of a particle’s track. Dashed circles have the radius equal to the distance of
the closest approach of a particle to a drift tube anode—their radii are calculated
from R–t calibration curve.
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