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In this paper we present an internal variable-based homogenization of a composite made of wavy elastic-
perfectly plastic layers. In the context of a strain-driven process, the macrostress and the effective yield
surface are expressed in terms of the residual stresses, which act as hardening parameters in the effective
behavior of the composite. Moreover, an approximate two-steps homogenization scheme useful for
composites made of matrix with wavy inclusions is proposed and a comparison with one computational

and one semi-analytical homogenization method is presented.
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1. Introduction

Modeling the mechanical behavior of non-linear heterogeneous
materials has been the subject of many research papers from
both mathematical and computational point of view
[4,6,9,9-11,13,16,22,25,29,35,36,38—42,49—51]. Special attention
has been paid to the case of composites with properties and/or
geometry dependent on a non-linear periodicity function
[5,7,8,14,15], and/or non-linear constitutive behavior of the con-
stituent materials [14,15,52,53]. For general plasticity equations and
viscoplasticity with non-linear hardening we refer to the book [1];
which covers constitutive equations of “monotone type”, and to [2].

The role of dissipation inequality in homogenization of dissi-
pative materials is crucial: it needs to be considered in both micro-
and macro-level in order to lead to the correct constitutive evolu-
tion equations relating stress and internal variables. The local
problem in generalized standard materials (GSM) was completely
described by Refs. [30—34,43,47] (see also [17,18,20], based on the
fundamental works of [21] and [37]. Generalized materials are
described by state and internal variables. Generalized forces are
then defined from the free energy function expression in terms of
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the above variables. Additionally, the dissipation inequality holds
and by the Lagrange multiplier's technique gives the evolutionary
equations.

Wavy architectures can be found in the nature or constructed
for functional purposes or accidently obtained in manufacturing
processes and the thermomechanical behavior of forming ma-
terials or structures under specific loading and environmental
conditions is of special technological interest [23—26,54]. Wavy
multilayer materials and structural components are character-
ized by a wavy periodicity at several scales: corrugated cross
sections used to stiffen structural panels, laminated composite
plates exhibiting manufacturing induced waviness with prob-
lematic behavior under compression, microstructures with
wavy architectures, biological tissues such as chordea tendenea
found in heart valves, where stiff collagen fibril crimp patterns
control the opening and closing of the valve leaflets [24],
continue to form the subject of intense research effort
[22,25—-28,45,54—56]. In nanotechnology, wavy interfacial
morphology can enhance the overall properties of composites
made of thin metallic and ceramic multilayers for magnetic,
optoelectronic and high-speed electronic applications [24]. Novel
fuzzy fiber reinforced composites are composed of carbon fibers,
wavy carbon nanotubes and epoxy matrix, with the carbon fibers
radially grown on the circumferential surfaces of the carbon fi-
bers [14,15,28].
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The objective of this paper is twofold: first, to present an
analytical dissipation inequality-based homogenization scheme for
a wavy multilayered medium made of elastic-perfectly plastic
components; second, to propose an approximate two-steps ho-
mogenization for a composite made of a matrix with wavy in-
clusions. In Section 2 a review on the role of dissipation inequality
in the homogenization process of rate-independent dissipative
materials is presented. More specifically, it is verified that the
overall behavior of a heterogeneous material is a generalized
standard material behavior and the strain-driven localization
problem is formulated. Moreover, the fundamental assumptions, of
additivity for the free energy and of dependence of its effective
value on the microstrain and a finite number of micro-internal
parameters, allow for defining the effective generalized forces
through the variation of the effective energy, and subsequently of
expressing the overall dissipation starting from the microstresses
and the rates of internal micro-hardening “forces” and microplastic
strains, in correlation with micro-yield surface. In Section 3, the
analytical homogenization of a wavy layered composite made of
two elastic-perfectly plastic materials is presented. This includes
the analytical expressions for the effective constitutive law, for the
macroscopic yield surface and for the residual microstresses in
terms of the macrostrain and the plastic microstrains. An inter-
esting finding is that, as expected [49], even if the constituents are
isotropic and without hardening, the composite exhibits anisotropy
and hardening due to the presence of residual stresses in the
effective yield surface. Finally, in Section 4, a two-steps approxi-
mate homogenization scheme is presented for a composite with
wavy inclusions and numerical examples of the proposed homog-
enization scheme are presented, corresponding to a unit cell under
monotone and cyclic loading respectively. Moreover, the results are
compared to one semi-analytical and one computational (Finite
Volume Direct Averaging Micromechanics-FVDAM [41], method.
The construction of the effective yield surface completes the nu-
merical experiments. In three appendices, all matrices needed for
the analytical expressions of micro-and macrovariables are
presented.

2. The dissipation in heterogeneous generalized standard
materials

We consider three spatial variables that coexist for the
description of the problem. The first one is the macroscale denoted
by' x in the heterogeneous body, at which the heterogeneities,
characterized by ¢, are very small compared to the whole structure
and can be considered as invisible. The second spatial variable is the
microscale denoted by % which is the scale for the heterogeneities
(Fig. 1). The third spatial variable is used only if the body exhibits a
generalized (non-linear) periodicity.

The case of materials with generalized periodicity is of special
interest for two reasons: first, since it corresponds sometimes to a
non-repetitive geometry as in composites with cylindrical period-
icity and second, it uses simpler unit cells and may allow semi-
analytical homogenization methods [53]. The choice of the repre-
sentative volume element is made with respect to the generalized
periodicity vector function g(x) and Y = [0,y1] x [0,y2] x [0,y3] is
chosen to be the basic cell, where

y= : (2.1)

! In the sequel, every vector or tensor will be denoted with two ways: a bold-
symbol or its indicial notation. The scalar quantities appear in regular fonts.
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Fig. 1. Macro- and microscale.

The dependence of functions on the microcoordinate is per-
formed (in a non-periodic way, except if g(x) = x) via

y==C. (2.2)

o |

In this paper we focus our attention on the multilayered mate-
rials (see Fig. 2). For simplicity, we present the case of structures
with layers parallel to the x3-axis. Thus, at every macropoint (x1,X2)
microstress and microstrain are uniform in every phase with values
depending on (x1,x2) [52]. More specifically, the angle 6(x1,x2) of the
tangent at the macropoint with xq-axis enters the equations of
microstress equilibrium and the equations of continuity at the in-
terfaces, as well as the effective tangent modulus at (x1,x7).

Let us now denote field variables ¢°, ¢ and u' as microscopic
variables and =, E and u°® as the macroscopic variables. The
macroscopic quantities depend only on the macrocoordinate x. It is
worth noticing that both classes of deformation fields are related to
the representative volume element located at x. Away from the
boundaries, stress and strain fields conform at the microlevel to the
generalized periodicity conditions:

0

a2, 0 are Y — periodic functions of y. (2.3)

The actual displacement u® within Y located at x is assumed to
be expressed as a sum of a linear and a generalized-periodic part
[48,50,52].

u(x,y.y) = Egy; +u} (24)

where

ul =ul(x,y), (2.5)
i)

Fig. 2. Wavy multilayered material.
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