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a b s t r a c t

This paper proposes variable kinematic, mixed theories for laminated plates built via the asymptotic/
axiomatic method (AAM). This method has been recently developed and successfully applied to develop
refined theories for multilayered plates and shells. The AAM evaluates the accuracy of each unknown
variables of a structural model. The present paper extends the AAM to mixed theories based on the
Reissner Mixed Variational Theorem (RMVT). The displacement and transverse stress fields are modeled
by means of the Carrera Unified Formulation (CUF), and expansions up to the fourth-order are employed.
Equivalent Single Layer (ESL) and Layer Wise (LW) schemes are adopted, and closed-form Navier-type
solutions are considered.

The AAM is exploited to determine the set of active terms of a refined plate model. The inactive terms
are then discarded. The effectiveness of each variable is evaluated with respect to an LW, fourth-order
mixed model. Reduced models are built for different thickness ratios, stacking sequences and
displacement/stress variables.

The results suggest that reduced models with significantly less unknown variables than full models
can be built with no accuracies penalties. Such models are problem dependent, and full models should be
preferred in the case of thick, asymmetric plates.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite and metallic plates are commonly adop-
ted in many engineering applications, and a number of structural
models have been developed over the last decades for their anal-
ysis. The solution of the 3D elasticity equations can be very
expensive from a computationally standpoint, and, moreover, such
solutions are usually valid only for a few geometries, material
characteristics, and boundary conditions. 2D structural models are
employed to analyze plates. The oldest plate model is due to
Kirchhoff [1]. According to this model, transverse shear, and normal
strains are assumed to be negligible with respect to the other stress
and strain components. An extension of this model to multilayered
structures is referred to as the Classical Lamination Theory (CLT).
Further details on shell theories can be found in Ref. [2].

Refined plate models have been developed to improve the
Kirchhoff model. A brief overview of some of the main techniques
to develop advanced plate models for the static analysis of com-
posite plates is presented hereinafter. In particular, the following
macro categories are addressed:

� Models that account for transverse and normal shear effects.
� Layer-Wise And Zig-Zag models.
� Asymptotic approaches and the proper generalized
decomposition.

� Reissner Mixed Variational Theorem (RMVT) based models.

Particular attention is paid to the latter; the main aim of this
paper deals, in fact, with refined plate models based on the RMVT.

Shear effects in laminated plates can be very significant; the
shear deformability in this type of plates is higher than in isotropic
plates. Reissner and Mindlin [3,4] included the shear effect, and
their model is known as the First Order Shear Deformation Theory
(FSDT). Further refinements of the FSDT can be achieved through
the Vlasov [5] and the Reddy-Vlasov model [6]. These models
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account for the homogenous conditions for the transverse shear
stresses at the top and bottom plate surfaces.

Hildebrand, Reissner, and Thomas [7] developed a refinedmodel
that accounts for both the transverse shear and normal stress ef-
fects, i.e. that fulfills Koiter's recommendation [8]. Other significant
contributions on laminated plate models can be found in
Refs. [9e12].

Multilayered structures are transversely anisotropic, and their
mechanical properties are discontinuous along the thickness. These
features are responsible for transverse displacements whose slopes
can rapidly change at the layer interfaces and transversely
discontinuous in-plane stresses. Due to equilibrium conditions,
transverse stresses must be continuous at the interfaces. The Layer-
Wise (LW) approach [13e15], Zig-zag models [16,17] and mixed
variational tools [18e20] have been proposed to deal with these
mechanical behaviors. In the LW, each layer is seen as an inde-
pendent plate and compatibility of displacement components are
imposed at the interfaces. Compatibility and equilibrium condi-
tions are then used at the interfaces to reduce the number of the
unknown variables.

The plate theories mentioned above are axiomatic; the un-
known variable fields are, in fact, assumed a priori, and such as-
sumptions are based on the scientist's intuition and experience. An
alternative approach is the asymptotic method inwhich asymptotic
expansions of the unknown variables are introduced along the
plate thickness. The asymptotic method provides approximate
theories with known accuracy with respect to the 3D exact solution
[21e24]. The influence of the expansion terms is evaluated with
respect to a geometrical perturbation parameter (e.g. the thickness-
to-length ratio). The asymptotic approach furnishes consistent
approximations; that is, all the retained terms are those which
influence the solution with the same order of magnitude as the
vanishing perturbation parameter.

The Proper Generalized Decomposition (PGD) decomposes a 3D
problem as the summation of a number of 1D and 2D functions
[25]. PGD can be considered as a powerful tool to reduce the nu-
merical complexity of 3D problem.

The RMVT is a mixed variational approach in which displace-
ments and transverse stresses are the unknown variables of the
structural problem. Furthermore, in an RMVT model the inter-
laminar continuity of transverse stresses is imposed a priori
[18,26e28]. Murakami and Toledano applied the RMVT to the
analysis of multilayered plates via first and higher-order theories
and layer-wise schemes [19,29,30].

This paper proposes refined plate models by means of the
Carrera Unified Formulation (CUF) [31,32]. According to the CUF,
the displacement and stress fields of plates can be defined as
arbitrary expansions of the thickness coordinate. The expansion
order is a free parameter of the analysis, and it can be chosen via
a convergence analysis. The governing equations are obtained
through a set of fundamental nuclei whose form does not depend
on either the expansion order nor the base functions. CUF models
based on the RMVT have been developed over the last years
[20,33e42].

The axiomatic/asymptotic method (AAM) has been recently
developed for beams [43,44] and plates [45,46] in the CUF frame-
work. The AAM investigates the effectiveness of each generalized
displacement variable of a refined theory against the variation of
various parameters; such as the thickness, the orthotropic ratio and
the stacking sequence. The AAM leads to the definition of reduced
models that have the same accuracy of the full model but that have
fewer unknown variables. The best theory diagram (BTD) is an
important outcome that stemmed from the use of the AAM [47].
The BTD is a diagram in which, for a given problem, the computa-
tionally cheapest structural model for a given accuracy can be read.

The BTD is problem-dependent, and it can be obtained by
exploiting genetic algorithms [48,49]. The most recent de-
velopments have dealt with the definition of more accurate tech-
niques to evaluate the accuracy of the model [50,51], layer-wise
plate [52] and shell [53] models.

In this work, the AAM is applied to RMVT models for the first
time. Navier-like closed-form solutions are employed, and both ESL
and LW models are considered. This paper is organized as follows:
the geometrical relations for plates and the constitutive equations
for laminated structures are presented in Section 2; the CUF is
presented in Section 3; the governing equations are introduced in
Section 4; the axiomatic/asymptotic technique and the BTD are
introduced in Section 5; the results are given in Section 6; the
conclusions are drawn in Section 7.

2. Geometrical and constitutive relations for plates

The plate geometry is shown in Fig. 1; the reference surface is U
and its boundary is G. The reference system axes which lie on the
reference surface U are denoted as x, y; z is the reference axis
normal to the reference surface. The length side dimensions of the
plate are indicated as a and b, and the thickness of the plate is h.

The strain components for a generic k layer are evaluated ac-
cording to the linear strain-displacement relation, that is

ε
k ¼ Duk (1)

where D is a differential operator whose components are

D ¼
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Strain components are grouped into in-plane (p) and out-of-
plane (n) components, that is
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Fig. 1. Plate geometry and reference frame.
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